2. Consider the following matrix and its RREF [40-8-1 6 3 3 A = 3 1 -2 4 1 1 0 0 3 -1 0 2 43 4 -2-9 30-6 06 Explain all your answers (a) Determine a basis for Col(A) (b) Determine a basis for Nul(A). (c) Determine rank(A) and nullity(A). RREF 1 0-2 0 0 1 0 00 01 00 00 00 74000 28410 01 -3 0 0 1 0
2. Consider the following matrix and its RREF [40-8-1 6 3 3 A = 3 1 -2 4 1 1 0 0 3 -1 0 2 43 4 -2-9 30-6 06 Explain all your answers (a) Determine a basis for Col(A) (b) Determine a basis for Nul(A). (c) Determine rank(A) and nullity(A). RREF 1 0-2 0 0 1 0 00 01 00 00 00 74000 28410 01 -3 0 0 1 0
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
![### Matrix and RREF Analysis
Consider the following matrix \( A \) and its Reduced Row Echelon Form (RREF):
\[
A = \left[\begin{array}{cccccc}
4 & 0 & -8 & -1 & 4 & -4 \\
3 & 3 & 6 & 1 & 1 & 0 \\
3 & 1 & -2 & 0 & 3 & -1 \\
4 & 3 & 4 & -2 & -9 & 0 \\
3 & 0 & -6 & 0 & 6 & 2 \\
\end{array}\right]
\xrightarrow{\text{RREF}}
\left[\begin{array}{cccccc}
1 & 0 & -2 & 0 & 2 & 0 \\
0 & 1 & 4 & 0 & -3 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\right]
\]
#### Explain all your answers
**(a) Determine a basis for \(\text{Col}(A)\).**
To find a basis for the column space \(\text{Col}(A)\), note the columns in the original matrix \( A \) that correspond to the leading 1s in the RREF. These are the first, second, fourth, and sixth columns. Thus, a basis for \(\text{Col}(A)\) comprises these columns from \( A \).
**(b) Determine a basis for \(\text{Nul}(A)\).**
To find a basis for the null space \(\text{Nul}(A)\), solve the homogenous system corresponding to the RREF of \( A \). Set the free variables and express other variables in terms of these. The solution vector that results gives a basis for \(\text{Nul}(A)\).
**(c) Determine \(\text{rank}(A)\) and \(\text{nullity}(A)\).**
- \(\text{rank}(A)\) is the number of leading 1s in the RREF, which is 4.
- \(\text{nullity](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F992f5037-f1cc-4483-8aa3-731b184958ad%2F701ba778-84ad-4884-9dd8-bd85d562d63e%2F2kdlcqa_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Matrix and RREF Analysis
Consider the following matrix \( A \) and its Reduced Row Echelon Form (RREF):
\[
A = \left[\begin{array}{cccccc}
4 & 0 & -8 & -1 & 4 & -4 \\
3 & 3 & 6 & 1 & 1 & 0 \\
3 & 1 & -2 & 0 & 3 & -1 \\
4 & 3 & 4 & -2 & -9 & 0 \\
3 & 0 & -6 & 0 & 6 & 2 \\
\end{array}\right]
\xrightarrow{\text{RREF}}
\left[\begin{array}{cccccc}
1 & 0 & -2 & 0 & 2 & 0 \\
0 & 1 & 4 & 0 & -3 & 0 \\
0 & 0 & 0 & 1 & 4 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{array}\right]
\]
#### Explain all your answers
**(a) Determine a basis for \(\text{Col}(A)\).**
To find a basis for the column space \(\text{Col}(A)\), note the columns in the original matrix \( A \) that correspond to the leading 1s in the RREF. These are the first, second, fourth, and sixth columns. Thus, a basis for \(\text{Col}(A)\) comprises these columns from \( A \).
**(b) Determine a basis for \(\text{Nul}(A)\).**
To find a basis for the null space \(\text{Nul}(A)\), solve the homogenous system corresponding to the RREF of \( A \). Set the free variables and express other variables in terms of these. The solution vector that results gives a basis for \(\text{Nul}(A)\).
**(c) Determine \(\text{rank}(A)\) and \(\text{nullity}(A)\).**
- \(\text{rank}(A)\) is the number of leading 1s in the RREF, which is 4.
- \(\text{nullity
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)