2. Consider the alternating series 1 –+-+..., i.e. Eak where az = (-1)k-1 for all k e N. 4 Let Sn =E- ak denote the partial sums. (a) Show that Eak is not absolutely convergent. (b) Show that for all n E N, 1 San =E 1 = S2n + and S2n+1 2k(2k – 1) 2n + 1 k=1 (Hint: group pairs of odd and even terms.) (c) Prove that the sequence of even partial sums (S2n) has a limit S. (d) Prove that the whole sequence (Sm) has the same limit S, and hence , ak = S.
2. Consider the alternating series 1 –+-+..., i.e. Eak where az = (-1)k-1 for all k e N. 4 Let Sn =E- ak denote the partial sums. (a) Show that Eak is not absolutely convergent. (b) Show that for all n E N, 1 San =E 1 = S2n + and S2n+1 2k(2k – 1) 2n + 1 k=1 (Hint: group pairs of odd and even terms.) (c) Prove that the sequence of even partial sums (S2n) has a limit S. (d) Prove that the whole sequence (Sm) has the same limit S, and hence , ak = S.
Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
2
![2. Consider the alternating series 1 –+-+.
i.e. Ear where ar = (-1)k-1! for all k e N.
Let Sn
E- ak denote the partial sums.
(a) Show that ak is not absolutely convergent.
(b) Show that for all n E N,
n
1
S2n
and S2n+1
1
= S2n +
2 2k(2k – 1)
2n + 1
k=1
(Hint: group pairs of odd and even terms.)
(c) Prove that the sequence of even partial sums (S2n) has a limit S.
(d) Prove that the whole sequence (Sm) has the same limit S, and hence E, ak = S.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fab68ef6f-9760-4c1f-88a8-6e5ceb2168b2%2F80ac8017-c7c3-4c0b-81a0-87f38866fd8e%2F8o66bum_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Consider the alternating series 1 –+-+.
i.e. Ear where ar = (-1)k-1! for all k e N.
Let Sn
E- ak denote the partial sums.
(a) Show that ak is not absolutely convergent.
(b) Show that for all n E N,
n
1
S2n
and S2n+1
1
= S2n +
2 2k(2k – 1)
2n + 1
k=1
(Hint: group pairs of odd and even terms.)
(c) Prove that the sequence of even partial sums (S2n) has a limit S.
(d) Prove that the whole sequence (Sm) has the same limit S, and hence E, ak = S.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 4 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
![Thomas' Calculus (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
![Calculus: Early Transcendentals (3rd Edition)](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
![Calculus: Early Transcendentals](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
![Precalculus](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Calculus: Early Transcendental Functions](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning