2. Consider a fourth-order polynomial approximation 0e (x) = a, + a2x + a3x2 + a4x3 + a5x* applied to an element e covering the domain of x E [0,8]. Assume all nodes are equally spaced: a. Construct the element shape functions. b. Find the approximation for displacement field if de = [0, 2, –1,1,3]. c. Calculate the Be matrix and approximate the strain field using Be and de in b.
2. Consider a fourth-order polynomial approximation 0e (x) = a, + a2x + a3x2 + a4x3 + a5x* applied to an element e covering the domain of x E [0,8]. Assume all nodes are equally spaced: a. Construct the element shape functions. b. Find the approximation for displacement field if de = [0, 2, –1,1,3]. c. Calculate the Be matrix and approximate the strain field using Be and de in b.
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
2
![2. Consider a fourth-order polynomial approximation 0e (x) = a, + a2x + a3x2 + a4x3 + a5x*
applied to an element e covering the domain of x E [0,8]. Assume all nodes are equally spaced:
a. Construct the element shape functions.
b. Find the approximation for displacement field if de =
[0, 2, –1,1,3].
c. Calculate the Be matrix and approximate the strain field using Be and de in b.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fcc1f0895-3e88-478e-9b57-bd5425e70952%2F52aa3e19-645c-4fe1-9662-4e0e10df0c5f%2Fmugdloi_processed.jpeg&w=3840&q=75)
Transcribed Image Text:2. Consider a fourth-order polynomial approximation 0e (x) = a, + a2x + a3x2 + a4x3 + a5x*
applied to an element e covering the domain of x E [0,8]. Assume all nodes are equally spaced:
a. Construct the element shape functions.
b. Find the approximation for displacement field if de =
[0, 2, –1,1,3].
c. Calculate the Be matrix and approximate the strain field using Be and de in b.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)