Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question

Transcribed Image Text:**Problem Statement:**
2. Change the point (2, 4, -4) from rectangular to cylindrical coordinates and spherical coordinates.
---
**Explanation:**
This problem requires converting the given point in rectangular (Cartesian) coordinates `(x, y, z)` to both cylindrical and spherical coordinate systems.
**Cylindrical Coordinates:**
The cylindrical coordinate system `(r, θ, z)` is related to Cartesian coordinates `(x, y, z)` using the following relationships:
- \( r = \sqrt{x^2 + y^2} \)
- \( θ = \tan^{-1}(\frac{y}{x}) \)
- \( z = z \)
**Spherical Coordinates:**
The spherical coordinate system `(ρ, θ, φ)` is related to Cartesian coordinates `(x, y, z)` using the following relationships:
- \( ρ = \sqrt{x^2 + y^2 + z^2} \)
- \( θ = \tan^{-1}(\frac{y}{x}) \)
- \( φ = \cos^{-1}(\frac{z}{ρ}) \)
**Steps to solve:**
1. **Cylindrical Coordinates:**
- Calculate \( r \) using \( r = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5} \).
- Calculate \( θ \) using \( θ = \tan^{-1}(\frac{4}{2}) = \tan^{-1}(2) \).
- The \( z \)-coordinate remains the same, i.e., \( z = -4 \).
2. **Spherical Coordinates:**
- Calculate \( ρ \) using \( ρ = \sqrt{2^2 + 4^2 + (-4)^2} = \sqrt{36} = 6 \).
- The angle \( θ \) is the same as in cylindrical coordinates, \( θ = \tan^{-1}(2) \).
- Calculate \( φ \) using \( φ = \cos^{-1}(\frac{-4}{6}) = \cos^{-1}(-\frac{2}{3}) \).
Substitute these values back into the respective coordinate forms to obtain the cylindrical and spherical coordinates.
Expert Solution

Step 1: Introduction
Given: The rectangular coordinate points
Find the cylindrical and spherical coordinates from the given point.
The cylindrical coordinates is of the form
The spherical coordinates is of the form
Step by step
Solved in 4 steps

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning