2. Change the point (2,4,-4) from rectangular to cylindrical coordinates and spherical coordinates.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Question
**Problem Statement:**

2. Change the point (2, 4, -4) from rectangular to cylindrical coordinates and spherical coordinates.

---

**Explanation:**

This problem requires converting the given point in rectangular (Cartesian) coordinates `(x, y, z)` to both cylindrical and spherical coordinate systems.

**Cylindrical Coordinates:**

The cylindrical coordinate system `(r, θ, z)` is related to Cartesian coordinates `(x, y, z)` using the following relationships:

- \( r = \sqrt{x^2 + y^2} \)
- \( θ = \tan^{-1}(\frac{y}{x}) \)
- \( z = z \)

**Spherical Coordinates:**

The spherical coordinate system `(ρ, θ, φ)` is related to Cartesian coordinates `(x, y, z)` using the following relationships:

- \( ρ = \sqrt{x^2 + y^2 + z^2} \)
- \( θ = \tan^{-1}(\frac{y}{x}) \)
- \( φ = \cos^{-1}(\frac{z}{ρ}) \)

**Steps to solve:**

1. **Cylindrical Coordinates:**
   - Calculate \( r \) using \( r = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5} \).
   - Calculate \( θ \) using \( θ = \tan^{-1}(\frac{4}{2}) = \tan^{-1}(2) \).
   - The \( z \)-coordinate remains the same, i.e., \( z = -4 \).

2. **Spherical Coordinates:**
   - Calculate \( ρ \) using \( ρ = \sqrt{2^2 + 4^2 + (-4)^2} = \sqrt{36} = 6 \).
   - The angle \( θ \) is the same as in cylindrical coordinates, \( θ = \tan^{-1}(2) \).
   - Calculate \( φ \) using \( φ = \cos^{-1}(\frac{-4}{6}) = \cos^{-1}(-\frac{2}{3}) \).

Substitute these values back into the respective coordinate forms to obtain the cylindrical and spherical coordinates.
Transcribed Image Text:**Problem Statement:** 2. Change the point (2, 4, -4) from rectangular to cylindrical coordinates and spherical coordinates. --- **Explanation:** This problem requires converting the given point in rectangular (Cartesian) coordinates `(x, y, z)` to both cylindrical and spherical coordinate systems. **Cylindrical Coordinates:** The cylindrical coordinate system `(r, θ, z)` is related to Cartesian coordinates `(x, y, z)` using the following relationships: - \( r = \sqrt{x^2 + y^2} \) - \( θ = \tan^{-1}(\frac{y}{x}) \) - \( z = z \) **Spherical Coordinates:** The spherical coordinate system `(ρ, θ, φ)` is related to Cartesian coordinates `(x, y, z)` using the following relationships: - \( ρ = \sqrt{x^2 + y^2 + z^2} \) - \( θ = \tan^{-1}(\frac{y}{x}) \) - \( φ = \cos^{-1}(\frac{z}{ρ}) \) **Steps to solve:** 1. **Cylindrical Coordinates:** - Calculate \( r \) using \( r = \sqrt{2^2 + 4^2} = \sqrt{20} = 2\sqrt{5} \). - Calculate \( θ \) using \( θ = \tan^{-1}(\frac{4}{2}) = \tan^{-1}(2) \). - The \( z \)-coordinate remains the same, i.e., \( z = -4 \). 2. **Spherical Coordinates:** - Calculate \( ρ \) using \( ρ = \sqrt{2^2 + 4^2 + (-4)^2} = \sqrt{36} = 6 \). - The angle \( θ \) is the same as in cylindrical coordinates, \( θ = \tan^{-1}(2) \). - Calculate \( φ \) using \( φ = \cos^{-1}(\frac{-4}{6}) = \cos^{-1}(-\frac{2}{3}) \). Substitute these values back into the respective coordinate forms to obtain the cylindrical and spherical coordinates.
Expert Solution
Step 1: Introduction

Given: The rectangular coordinate points 2,4,-4

Find the cylindrical and spherical coordinates from the given point.

The cylindrical coordinates is of the form r,θ,z

The spherical coordinates is of the form ρ,ϕ,θ

 

 

steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning