2. A 200-turn solenoid with length of 20 cm and diameter of 2 cm. When a 5-A current passes through the solenoid, find the magnetic field within the solenoid.
2. A 200-turn solenoid with length of 20 cm and diameter of 2 cm. When a 5-A current passes through the solenoid, find the magnetic field within the solenoid.
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
![**Problem:**
A 200-turn solenoid with a length of 20 cm and a diameter of 2 cm. When a 5-A current passes through the solenoid, find the magnetic field within the solenoid.
**Solution:**
To find the magnetic field within the solenoid, we can use the formula for the magnetic field inside a solenoid:
\[ B = \mu_0 \times n \times I \]
where:
- \( B \) is the magnetic field,
- \( \mu_0 \) is the permeability of free space (\(4\pi \times 10^{-7} \, \text{T} \cdot \text{m/A}\)),
- \( n \) is the number of turns per unit length,
- \( I \) is the current passing through the solenoid.
First, calculate the number of turns per unit length (\( n \)):
\[ n = \frac{\text{Number of turns}}{\text{Length of the solenoid}} = \frac{200}{0.2 \, \text{m}} = 1000 \, \text{turns/m} \]
Substitute the values into the formula:
\[ B = (4\pi \times 10^{-7}) \times 1000 \times 5 \]
\[ B = 2\pi \times 10^{-3} \]
\[ B \approx 6.28 \times 10^{-3} \, \text{T} \]
Thus, the magnetic field within the solenoid is approximately \( 6.28 \, \text{mT} \).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd4a02593-47b6-4253-beb0-7c85972c9833%2F35feecb6-4c72-4a4f-9fc2-0a2d81fee52c%2F88sete_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem:**
A 200-turn solenoid with a length of 20 cm and a diameter of 2 cm. When a 5-A current passes through the solenoid, find the magnetic field within the solenoid.
**Solution:**
To find the magnetic field within the solenoid, we can use the formula for the magnetic field inside a solenoid:
\[ B = \mu_0 \times n \times I \]
where:
- \( B \) is the magnetic field,
- \( \mu_0 \) is the permeability of free space (\(4\pi \times 10^{-7} \, \text{T} \cdot \text{m/A}\)),
- \( n \) is the number of turns per unit length,
- \( I \) is the current passing through the solenoid.
First, calculate the number of turns per unit length (\( n \)):
\[ n = \frac{\text{Number of turns}}{\text{Length of the solenoid}} = \frac{200}{0.2 \, \text{m}} = 1000 \, \text{turns/m} \]
Substitute the values into the formula:
\[ B = (4\pi \times 10^{-7}) \times 1000 \times 5 \]
\[ B = 2\pi \times 10^{-3} \]
\[ B \approx 6.28 \times 10^{-3} \, \text{T} \]
Thus, the magnetic field within the solenoid is approximately \( 6.28 \, \text{mT} \).
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![College Physics](https://www.bartleby.com/isbn_cover_images/9781305952300/9781305952300_smallCoverImage.gif)
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
![University Physics (14th Edition)](https://www.bartleby.com/isbn_cover_images/9780133969290/9780133969290_smallCoverImage.gif)
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
![Introduction To Quantum Mechanics](https://www.bartleby.com/isbn_cover_images/9781107189638/9781107189638_smallCoverImage.jpg)
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
![Physics for Scientists and Engineers](https://www.bartleby.com/isbn_cover_images/9781337553278/9781337553278_smallCoverImage.gif)
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
![Lecture- Tutorials for Introductory Astronomy](https://www.bartleby.com/isbn_cover_images/9780321820464/9780321820464_smallCoverImage.gif)
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
![College Physics: A Strategic Approach (4th Editio…](https://www.bartleby.com/isbn_cover_images/9780134609034/9780134609034_smallCoverImage.gif)
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON