2. A 1.2 kg cart moving at 6.0 m/s [E] collides with a stationary 1.8 kg cart. The head-on collision is completely elastic and is cushioned by a spring. b)The maximum compression of the spring during the collision is 2.0 cm. Find the spring constant. do it correctly please and thank you
2. A 1.2 kg cart moving at 6.0 m/s [E] collides with a stationary 1.8 kg cart. The head-on collision is completely elastic and is cushioned by a spring. b)The maximum compression of the spring during the collision is 2.0 cm. Find the spring constant. do it correctly please and thank you
Physics for Scientists and Engineers: Foundations and Connections
1st Edition
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Katz, Debora M.
Chapter11: Collisions
Section: Chapter Questions
Problem 11PQ
Related questions
Topic Video
Question
2. A 1.2 kg cart moving at 6.0 m/s [E] collides with a stationary 1.8 kg cart. The head-on collision is completely elastic and is cushioned by a spring.
b)The maximum compression of the spring during the collision is 2.0 cm. Find the spring constant.
do it correctly please and thank you
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Step 1: Given data and what is find
VIEWStep 2: Using concept for this question
VIEWStep 3: Using conservation of momentum and conservation of K.E and find final velocities
VIEWStep 4: Calculation part for 2nd cart final velocity
VIEWStep 5: Using energy transferred concept and find spring constant
VIEWSolution
VIEWTrending now
This is a popular solution!
Step by step
Solved in 6 steps with 6 images
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Recommended textbooks for you
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers: Foundations…
Physics
ISBN:
9781133939146
Author:
Katz, Debora M.
Publisher:
Cengage Learning
Physics for Scientists and Engineers, Technology …
Physics
ISBN:
9781305116399
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Physics for Scientists and Engineers with Modern …
Physics
ISBN:
9781337553292
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Classical Dynamics of Particles and Systems
Physics
ISBN:
9780534408961
Author:
Stephen T. Thornton, Jerry B. Marion
Publisher:
Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:
9781133104261
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning