2. 4л е -1 4ле 4ле

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the
given curves about the y-axis.
y =
y = 0,
x = 0,
X = 1
Sketch the region and a typical shell.
Step 1
Rotating a vertical strip around the y-axis creates a cylinder with radius r = X
and
height h =
4e
Sketch the region and a typical shell.
4e-z²
y
y
4
-0.5
0.5
1lo
1.5
1
-1,5
-1.0
-0.5
0.5
1.0
1.5
y
y
-0.5
0.5
1Jo
1.5
-1.5
-1.0
1.0
1.5
Step 2
Now we can say that the volume of the solid created by rotating the region under y = 4eX and above the x-
axis between x = 0 and x = 1 around the y-axis is
V =
2nrh dx
1
dx.
4e
4e-2
Step 3
The integral 2T
4xe-x dx can be done with the substitution u =
and du =
-2x
dx.
-2.x
Step 4
4xe-x dx = -
4T
4n- e"
With the substitution, we have 2n
eu du = -
47
4re"
+C.
Step 5
Going back to x, the volume of our solid is
4ле
— 4ле
Transcribed Image Text:Use the method of cylindrical shells to find the volume V generated by rotating the region bounded by the given curves about the y-axis. y = y = 0, x = 0, X = 1 Sketch the region and a typical shell. Step 1 Rotating a vertical strip around the y-axis creates a cylinder with radius r = X and height h = 4e Sketch the region and a typical shell. 4e-z² y y 4 -0.5 0.5 1lo 1.5 1 -1,5 -1.0 -0.5 0.5 1.0 1.5 y y -0.5 0.5 1Jo 1.5 -1.5 -1.0 1.0 1.5 Step 2 Now we can say that the volume of the solid created by rotating the region under y = 4eX and above the x- axis between x = 0 and x = 1 around the y-axis is V = 2nrh dx 1 dx. 4e 4e-2 Step 3 The integral 2T 4xe-x dx can be done with the substitution u = and du = -2x dx. -2.x Step 4 4xe-x dx = - 4T 4n- e" With the substitution, we have 2n eu du = - 47 4re" +C. Step 5 Going back to x, the volume of our solid is 4ле — 4ле
Expert Solution
Step 1

As you have solved all the parts of the question except the last part,so we will solve that part of the question which is unsolved that is the step 5.

We know when we have to calculate f(x) from a ( lower limit) to b (upper limit) we calculate f(b) and f(a) then take the difference that is we have to calculate 

                 f(b)-f(a). 

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Knowledge Booster
Pythagoras' Theorem
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,