2 whose eigenvalues and eigenvectors are ri = 1, ui and r2 = -1, u2 Let A = ´a(t) b(t) ( dt). Find eAt a(t) ( Choose ) b(t) (Choose ] c(t) [ Choose ) d(t) ( Choose ) > > >

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Let \( A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \) whose eigenvalues and eigenvectors are \( r_1 = 1, \, \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \( r_2 = -1, \, \mathbf{u}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \).

Find \( e^{At} = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix} \).

- **a(t)**: [Choose]
- **b(t)**: [Choose]
- **c(t)**: [Choose]
- **d(t)**: [Choose]
Transcribed Image Text:Let \( A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \) whose eigenvalues and eigenvectors are \( r_1 = 1, \, \mathbf{u}_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \) and \( r_2 = -1, \, \mathbf{u}_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix} \). Find \( e^{At} = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix} \). - **a(t)**: [Choose] - **b(t)**: [Choose] - **c(t)**: [Choose] - **d(t)**: [Choose]
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Knowledge Booster
Matrix Eigenvalues and Eigenvectors
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,