2) What rule maps ABC onto A'B'C'? 4 -3 A. (x, y) → (x+4, y - 4) B. (x, y) → (x-3, y + 5) 63 6 4 3 2 1 -2 -10 -1 18 -5 C A 2 3 4 B C. (x,y) → (x+5, y-3) D. (x, y) → (x-5, y + 3) 5

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
Help
### Transformations in the Coordinate Plane

#### Problem:
Consider the triangle \( \triangle ABC \) and its image \( \triangle A'B'C' \) shown on the coordinate plane in the diagram below. Determine the rule that maps \( \triangle ABC \) onto \( \triangle A'B'C' \).

#### Diagram:
A coordinate plane featuring two triangles:

- Triangle ABC:
  - \( A (5, 5) \)
  - \( B (5, 2) \)
  - \( C (2, -1) \)
- Triangle A'B'C':
  - \( A' (2, 10) \)
  - \( B' (2, 7) \)
  - \( C' (-1, 4) \)

The grid marks are on a scale, with individual squares representing a unit distance along both the x-axis and y-axis.

#### Answer Choices:
What rule maps \( \triangle ABC \) onto \( \triangle A'B'C' \)?

A. \( (x, y) \to (x + 4, y - 4) \)

B. \( (x, y) \to (x - 3, y + 5) \)

C. \( (x, y) \to (x + 5, y - 3) \)

D. \( (x, y) \to (x - 5, y + 3) \)

#### Explanation of the Correct Answer:

To determine which transformation rule maps \( \triangle ABC \) to \( \triangle A'B'C' \), we can calculate the changes in the coordinates from each point of \( \triangle ABC \) to \( \triangle A'B'C' \).

1. Calculate the difference in x-coordinate and y-coordinate for each point:
   - \( A (5, 5) \to A' (2, 10) \)
     - \( \Delta x = 2 - 5 = -3 \)
     - \( \Delta y = 10 - 5 = +5 \)
   - \( B (5, 2) \to B' (2, 7) \)
     - \( \Delta x = 2 - 5 = -3 \)
     - \( \Delta y = 7 - 2 = +5 \)
   - \( C (2, -1) \to C
Transcribed Image Text:### Transformations in the Coordinate Plane #### Problem: Consider the triangle \( \triangle ABC \) and its image \( \triangle A'B'C' \) shown on the coordinate plane in the diagram below. Determine the rule that maps \( \triangle ABC \) onto \( \triangle A'B'C' \). #### Diagram: A coordinate plane featuring two triangles: - Triangle ABC: - \( A (5, 5) \) - \( B (5, 2) \) - \( C (2, -1) \) - Triangle A'B'C': - \( A' (2, 10) \) - \( B' (2, 7) \) - \( C' (-1, 4) \) The grid marks are on a scale, with individual squares representing a unit distance along both the x-axis and y-axis. #### Answer Choices: What rule maps \( \triangle ABC \) onto \( \triangle A'B'C' \)? A. \( (x, y) \to (x + 4, y - 4) \) B. \( (x, y) \to (x - 3, y + 5) \) C. \( (x, y) \to (x + 5, y - 3) \) D. \( (x, y) \to (x - 5, y + 3) \) #### Explanation of the Correct Answer: To determine which transformation rule maps \( \triangle ABC \) to \( \triangle A'B'C' \), we can calculate the changes in the coordinates from each point of \( \triangle ABC \) to \( \triangle A'B'C' \). 1. Calculate the difference in x-coordinate and y-coordinate for each point: - \( A (5, 5) \to A' (2, 10) \) - \( \Delta x = 2 - 5 = -3 \) - \( \Delta y = 10 - 5 = +5 \) - \( B (5, 2) \to B' (2, 7) \) - \( \Delta x = 2 - 5 = -3 \) - \( \Delta y = 7 - 2 = +5 \) - \( C (2, -1) \to C
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning