2) The data file counties.csv contains information on land area, population, number of physicians, unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square miles; 1993 population was estimated to be 255,077,536. a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment on the shape of the distribution. b) Estimate the total farm population in the United States, along with its standard error, using Nỹ. c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and find the sample correlation coefficient between them. Which method do you think is more appropriate for these data: ratio estimation or regression estimation or none of them? d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in the United States, along with the standard error. e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer: SRS or ratio estimation? Here is the baseball.csv data. A B 1 RN State 2 27 AL 3 48 AL C County Escambia Marshall D E F G H L M N P Q R S landarea totpop physician enroll percpub civlabor unemp 948 36023 24 567 73524 44 6931 11928 95.4 15247 1339 531 414 farmpop numfarm farmacre fedgrant fedciv 90646 122.3 milit veterans percviet 85 370 3723 27.1 98.6 38803 3189 1592 1582 136599 235.7 316 748 8510 29.1 4 85 AK Prince of 7325 6408 7 1317 98.6 2787 383 71 2 214 32.2 126 63 809 44.6 5 126 AR Cross 616 19261 11 4066 99.1 8336 704 762 492 339830 81.4 87 107 1505 23.9 6 158 AR Newton 7 186 CA Butte 823 1640 188377 7649 3 1579 99.2 3280 270 600 562 98106 31.7 71 44 807 25.5 327 27899 94.5 77500 7303 2818 2030 494530 688 570 577 23958 27.6 8 254 CO Custer 9 286 CO 10 305 CT Ouray Hartford 739 542 736 847009 2140 1 364 97.5 789 42 145 2497 3 429 99.3 1919 109 112 2851 11 340 FL Hardee 637 20084 12 350 FL Lake 953 161228 13 371 FL St. Lucie 573 161106 14 422 GA Crisp 274 20377 15 432 GA Echols 16 527 GA Walton 17 559 ID 18 586 ID 404 329 40750 Camas 1075 755 Shoshone 2634 13644 2291 ུ རྞྞ ༦ ༤༠ ° གླ° 128982 90 470164 32673 623 130 88 656 60277 150334 -99 7 11 10 347 37.8 5.7 5 11 337 35.9 4051.1 8504 2975 93683 24.9 11 167 3802 19777 99.1 91.5 58285 9368 987 1202 1130 303892 60.6 55 44 2071 21.4 5182 1582 1285 232657 664.2 499 403 26923 21.6 176 22769 90.6 65078 8966 257 522 297433 543.7 536 348 23205 21.1 20 4112 95.1 8980 573 341 192 112431 67.3 64 170 1893 32.3 483 100 875 39 162 80 13745 4.8 5 19 242 30.2 29 7210 95.2 17404 955 756 469 65220 96.2 93 307 3551 28.4 0 147 100 365 24 66 117 174842 5.9 21 0 82 32.9 9 2683 97.8 5041 981 29 46 5148 59.5 203 75 2070 29.3 19 606 IL 20 617 IL Cook Ford 946 5139341 486 13914 15153 11 853115 81.5 2715405 196796 196 389 46907 20151.2 61976 16480 457880 24.2 2555 97.6 7265 481 1477 729 297013 54.4 69 40 1741 32.2 21 630 IL Jasper 494 10519 3 1994 91.7 5828 434 2795 894 262198 31.3 52 31 1073 22.7 22 639 IL Lake 23 698 IN 24 702 IN Boone Clark 25 703 IN Clay 26 743 IN 27 780 IN Martin Washingt 448 541047 423 38381 375 89658 358 25078 336 515 24398 1093 88975 88.9 319950 14863 586 448 82349 1641.8 9399 21454 53060 32.7 81 7062 95.1 21157 716 2258 822 227524 83.6 111 213 4283 29.5 109 15779 92.4 47787 3025 1310 691 118810 314.6 2980 488 11222 31.8 11 4506 95.9 10971 748 1811 646 162594 82.9 80 137 2874 22.2 10510 4 1923 95.2 5353 374 695 9 4443 99.1 11411 882 2119 361 67373 1034 195118 244.9 5240 109 1359 31.2 63.4 69 128 2745 29.7 counties + ་|

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
100%

Could you solve it using R, please? 

For the data I took a screenshot and attached it with the question

(the program does not allow me upload the full data)

So, just solve the quesiton base on the data I provided in the screenshot. 

 

Thank you.

2) The data file counties.csv contains information on land area, population, number of physicians,
unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United
States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square
miles; 1993 population was estimated to be 255,077,536.
a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment
on the shape of the distribution.
b) Estimate the total farm population in the United States, along with its standard error, using Nỹ.
c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and
find the sample correlation coefficient between them. Which method do you think is more
appropriate for these data: ratio estimation or regression estimation or none of them?
d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in
the United States, along with the standard error.
e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer:
SRS or ratio estimation?
Here is the baseball.csv data.
A
B
1 RN
State
2
27 AL
3
48 AL
C
County
Escambia
Marshall
D
E
F
G
H
L
M
N
P
Q
R
S
landarea totpop physician enroll
percpub civlabor unemp
948 36023
24
567
73524
44
6931
11928
95.4 15247
1339
531
414
farmpop numfarm farmacre fedgrant fedciv
90646 122.3
milit
veterans percviet
85
370
3723
27.1
98.6 38803
3189
1592
1582
136599
235.7
316
748
8510
29.1
4
85 AK
Prince of
7325
6408
7
1317
98.6
2787
383
71
2
214
32.2
126
63
809
44.6
5
126 AR
Cross
616 19261
11
4066
99.1
8336
704
762
492
339830
81.4
87
107
1505
23.9
6
158 AR
Newton
7
186 CA
Butte
823
1640 188377
7649
3
1579
99.2
3280
270
600
562
98106
31.7
71
44
807
25.5
327
27899
94.5
77500
7303
2818
2030 494530
688
570
577
23958
27.6
8
254 CO
Custer
9
286 CO
10
305 CT
Ouray
Hartford
739
542
736 847009
2140
1
364
97.5
789
42
145
2497
3
429
99.3
1919
109
112
2851
11
340 FL
Hardee
637 20084
12
350 FL
Lake
953 161228
13
371 FL
St. Lucie
573 161106
14
422 GA
Crisp
274
20377
15
432 GA
Echols
16
527 GA
Walton
17
559 ID
18
586 ID
404
329 40750
Camas
1075 755
Shoshone 2634 13644
2291
ུ རྞྞ ༦ ༤༠ ° གླ°
128982
90 470164
32673
623
130
88
656 60277
150334
-99
7
11
10
347
37.8
5.7
5
11
337
35.9
4051.1
8504
2975
93683
24.9
11
167
3802
19777
99.1
91.5 58285
9368
987
1202
1130 303892
60.6
55
44
2071
21.4
5182
1582
1285 232657
664.2
499
403
26923
21.6
176 22769
90.6
65078
8966
257
522 297433
543.7
536
348
23205
21.1
20
4112
95.1
8980
573
341
192 112431
67.3
64
170
1893
32.3
483
100
875
39
162
80 13745
4.8
5
19
242
30.2
29
7210
95.2
17404
955
756
469
65220
96.2
93
307
3551
28.4
0
147
100
365
24
66
117
174842
5.9
21
0
82
32.9
9
2683
97.8
5041
981
29
46
5148
59.5
203
75
2070
29.3
19
606 IL
20
617 IL
Cook
Ford
946 5139341
486 13914
15153
11
853115
81.5 2715405
196796
196
389
46907 20151.2
61976
16480
457880
24.2
2555
97.6
7265
481
1477
729 297013
54.4
69
40
1741
32.2
21
630 IL
Jasper
494 10519
3
1994
91.7
5828
434
2795
894 262198
31.3
52
31
1073
22.7
22
639 IL
Lake
23
698 IN
24
702 IN
Boone
Clark
25
703 IN
Clay
26
743 IN
27
780 IN
Martin
Washingt
448 541047
423
38381
375 89658
358 25078
336
515 24398
1093 88975
88.9
319950
14863
586
448 82349 1641.8
9399
21454 53060
32.7
81
7062
95.1
21157
716
2258
822 227524
83.6
111
213
4283
29.5
109
15779
92.4
47787
3025
1310
691 118810
314.6
2980
488
11222
31.8
11
4506
95.9
10971
748
1811
646 162594
82.9
80
137
2874
22.2
10510
4
1923
95.2
5353
374
695
9
4443
99.1 11411
882
2119
361 67373
1034 195118
244.9
5240
109
1359
31.2
63.4
69
128
2745
29.7
counties
+
་|
Transcribed Image Text:2) The data file counties.csv contains information on land area, population, number of physicians, unemployment, and a number of other quantities for an SRS of 100 of the 3141 counties in the United States (U.S. Census Bureau, 1994). The total land area for the United States is 3,536,278 square miles; 1993 population was estimated to be 255,077,536. a) Draw a histogram of the farm populations (the variable “farmpop") for the 100 counties. Comment on the shape of the distribution. b) Estimate the total farm population in the United States, along with its standard error, using Nỹ. c) Plot the farm populations vs. land areas (variables “farmpop” and “landarea”) for each county, and find the sample correlation coefficient between them. Which method do you think is more appropriate for these data: ratio estimation or regression estimation or none of them? d) Using ratio estimation, use the auxiliary variable land area to estimate the total farm population in the United States, along with the standard error. e) The “true” value for total farm population is 3,871,583. Which method of estimation came closer: SRS or ratio estimation? Here is the baseball.csv data. A B 1 RN State 2 27 AL 3 48 AL C County Escambia Marshall D E F G H L M N P Q R S landarea totpop physician enroll percpub civlabor unemp 948 36023 24 567 73524 44 6931 11928 95.4 15247 1339 531 414 farmpop numfarm farmacre fedgrant fedciv 90646 122.3 milit veterans percviet 85 370 3723 27.1 98.6 38803 3189 1592 1582 136599 235.7 316 748 8510 29.1 4 85 AK Prince of 7325 6408 7 1317 98.6 2787 383 71 2 214 32.2 126 63 809 44.6 5 126 AR Cross 616 19261 11 4066 99.1 8336 704 762 492 339830 81.4 87 107 1505 23.9 6 158 AR Newton 7 186 CA Butte 823 1640 188377 7649 3 1579 99.2 3280 270 600 562 98106 31.7 71 44 807 25.5 327 27899 94.5 77500 7303 2818 2030 494530 688 570 577 23958 27.6 8 254 CO Custer 9 286 CO 10 305 CT Ouray Hartford 739 542 736 847009 2140 1 364 97.5 789 42 145 2497 3 429 99.3 1919 109 112 2851 11 340 FL Hardee 637 20084 12 350 FL Lake 953 161228 13 371 FL St. Lucie 573 161106 14 422 GA Crisp 274 20377 15 432 GA Echols 16 527 GA Walton 17 559 ID 18 586 ID 404 329 40750 Camas 1075 755 Shoshone 2634 13644 2291 ུ རྞྞ ༦ ༤༠ ° གླ° 128982 90 470164 32673 623 130 88 656 60277 150334 -99 7 11 10 347 37.8 5.7 5 11 337 35.9 4051.1 8504 2975 93683 24.9 11 167 3802 19777 99.1 91.5 58285 9368 987 1202 1130 303892 60.6 55 44 2071 21.4 5182 1582 1285 232657 664.2 499 403 26923 21.6 176 22769 90.6 65078 8966 257 522 297433 543.7 536 348 23205 21.1 20 4112 95.1 8980 573 341 192 112431 67.3 64 170 1893 32.3 483 100 875 39 162 80 13745 4.8 5 19 242 30.2 29 7210 95.2 17404 955 756 469 65220 96.2 93 307 3551 28.4 0 147 100 365 24 66 117 174842 5.9 21 0 82 32.9 9 2683 97.8 5041 981 29 46 5148 59.5 203 75 2070 29.3 19 606 IL 20 617 IL Cook Ford 946 5139341 486 13914 15153 11 853115 81.5 2715405 196796 196 389 46907 20151.2 61976 16480 457880 24.2 2555 97.6 7265 481 1477 729 297013 54.4 69 40 1741 32.2 21 630 IL Jasper 494 10519 3 1994 91.7 5828 434 2795 894 262198 31.3 52 31 1073 22.7 22 639 IL Lake 23 698 IN 24 702 IN Boone Clark 25 703 IN Clay 26 743 IN 27 780 IN Martin Washingt 448 541047 423 38381 375 89658 358 25078 336 515 24398 1093 88975 88.9 319950 14863 586 448 82349 1641.8 9399 21454 53060 32.7 81 7062 95.1 21157 716 2258 822 227524 83.6 111 213 4283 29.5 109 15779 92.4 47787 3025 1310 691 118810 314.6 2980 488 11222 31.8 11 4506 95.9 10971 748 1811 646 162594 82.9 80 137 2874 22.2 10510 4 1923 95.2 5353 374 695 9 4443 99.1 11411 882 2119 361 67373 1034 195118 244.9 5240 109 1359 31.2 63.4 69 128 2745 29.7 counties + ་|
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 1 steps with 5 images

Blurred answer
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman