2 narrow, flat metal plates are positioned vertically, 20.00 cm. The first plate has a positive charge with charge density σ=+630.0 mC/m2 and a second plate has an equal but opposite negative charge with charge density σ=-6300.0 mC/m2 . There are also two narrow, flat metal plates positioned horizontally, 30.00 cm apart, with the top plate given a negative charge, and the bottom plate given an equal but opposite positive charge, such that the electric potential of the bottom plate is 5.00 V higher than the top plate. A small sphere with a mass of m =64.35 g, and a charge of q =22.00 mC is attached to a narrow, stiff, massless, insulating rod with a length of L= 8.00 cm, which is pivoted at point O, which is 2.000 cm from the second plate. The sphere/rod unit is angled at 5 degrees with horizontal and released from rest. Will the sphere/rod ever hit an angle of 0 degrees with the horizontal? If so, how long will it take to reach that point?
2 narrow, flat metal plates are positioned vertically, 20.00 cm. The first plate has a positive charge with charge density σ=+630.0 mC/m2 and a second plate has an equal but opposite negative charge with charge density σ=-6300.0 mC/m2 . There are also two narrow, flat metal plates positioned horizontally, 30.00 cm apart, with the top plate given a negative charge, and the bottom plate given an equal but opposite positive charge, such that the electric potential of the bottom plate is 5.00 V higher than the top plate. A small sphere with a mass of m =64.35 g, and a charge of q =22.00 mC is attached to a narrow, stiff, massless, insulating rod with a length of L= 8.00 cm, which is pivoted at point O, which is 2.000 cm from the second plate. The sphere/rod unit is angled at 5 degrees with horizontal and released from rest.
Will the sphere/rod ever hit an angle of 0 degrees with the horizontal? If so, how long will it take to reach that point?
Step by step
Solved in 2 steps