2) Let A be Compute: tr(AA) 51 4 1 T (iv) (A^¹)" (v) AA² (vi)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

compute iv v & vi

**Transcribed Image Text:**

2) Let \( A \) be 
\[
\begin{bmatrix}
5 & 1 \\
4 & 1 
\end{bmatrix}
\]

Compute:

(i) \, \( A^T \) \, \, \, \, 

(ii) \, \( A^{-1} \) \, \, \, \, 

(iii) \, \( (A^2)^{-1} \) \, \, \, \, 

(iv) \, tr(AAT)

(v) \, \( (A^{-1})^T \) 

(vi) \, \( A A^T \)

**Explanation:**

- **(i) \( A^T \)**: Transpose of matrix \( A \).

- **(ii) \( A^{-1} \)**: Inverse of matrix \( A \), if it exists.

- **(iii) \( (A^2)^{-1} \)**: Inverse of the matrix \( A \) squared, if it exists.

- **(iv) tr(AAT)**: Trace of the product of matrix \( A \) and its transpose.

- **(v) \( (A^{-1})^T \)**: Transpose of the inverse of matrix \( A \).

- **(vi) \( A A^T \)**: Product of matrix \( A \) and its transpose.
Transcribed Image Text:**Transcribed Image Text:** 2) Let \( A \) be \[ \begin{bmatrix} 5 & 1 \\ 4 & 1 \end{bmatrix} \] Compute: (i) \, \( A^T \) \, \, \, \, (ii) \, \( A^{-1} \) \, \, \, \, (iii) \, \( (A^2)^{-1} \) \, \, \, \, (iv) \, tr(AAT) (v) \, \( (A^{-1})^T \) (vi) \, \( A A^T \) **Explanation:** - **(i) \( A^T \)**: Transpose of matrix \( A \). - **(ii) \( A^{-1} \)**: Inverse of matrix \( A \), if it exists. - **(iii) \( (A^2)^{-1} \)**: Inverse of the matrix \( A \) squared, if it exists. - **(iv) tr(AAT)**: Trace of the product of matrix \( A \) and its transpose. - **(v) \( (A^{-1})^T \)**: Transpose of the inverse of matrix \( A \). - **(vi) \( A A^T \)**: Product of matrix \( A \) and its transpose.
Expert Solution
Step 1

We have to solve given Questions.

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,