[2] Find the Fourier series of the function f(x) = sin(4x) {ain(kx) -T≤ x < -π/2 -π/2
[2] Find the Fourier series of the function f(x) = sin(4x) {ain(kx) -T≤ x < -π/2 -π/2
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
2
![### Finding the Fourier Series of a Piecewise Function
Consider the problem of finding the Fourier series for the given piecewise function:
\[ f(x) =
\begin{cases}
0 & \text{for } -\pi \le x < -\pi/2 \\
\sin(4x) & \text{for } -\pi/2 \le x < \pi/2 \\
0 & \text{for } \pi/2 \le x \le \pi
\end{cases}
\]
The function \(f(x)\) is defined over the interval \([-π, π]\) and is piecewise continuous. The specific intervals and corresponding function values are described as follows:
- For \( -π \le x < -π/2 \), \( f(x) = 0 \)
- For \( -π/2 \le x < π/2 \), \( f(x) = \sin(4x) \)
- For \( π/2 \le x \le π \), \( f(x) = 0 \)
To construct the Fourier series, we will need to calculate the Fourier coefficients. The Fourier series of a function \(f(x)\) defined on the interval \([-L, L]\) is given by:
\[ f(x) \sim a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \]
Where:
- \(a_0\) is the average value of the function over one period,
- \(a_n\) and \(b_n\) are the Fourier coefficients given by:
\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
\]
\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx
\]
For this specific problem, since the function is defined on \([-π, π]\), we have \(L = π\). The intervals need to be considered when setting up the integr](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fa68164dd-6bba-4aa5-92bc-4824a71db092%2Ffb5d1a16-6dd5-4c95-be2c-0a2a0062a700%2Fwd7c2ko_processed.jpeg&w=3840&q=75)
Transcribed Image Text:### Finding the Fourier Series of a Piecewise Function
Consider the problem of finding the Fourier series for the given piecewise function:
\[ f(x) =
\begin{cases}
0 & \text{for } -\pi \le x < -\pi/2 \\
\sin(4x) & \text{for } -\pi/2 \le x < \pi/2 \\
0 & \text{for } \pi/2 \le x \le \pi
\end{cases}
\]
The function \(f(x)\) is defined over the interval \([-π, π]\) and is piecewise continuous. The specific intervals and corresponding function values are described as follows:
- For \( -π \le x < -π/2 \), \( f(x) = 0 \)
- For \( -π/2 \le x < π/2 \), \( f(x) = \sin(4x) \)
- For \( π/2 \le x \le π \), \( f(x) = 0 \)
To construct the Fourier series, we will need to calculate the Fourier coefficients. The Fourier series of a function \(f(x)\) defined on the interval \([-L, L]\) is given by:
\[ f(x) \sim a_0 + \sum_{n=1}^{\infty} \left( a_n \cos\left(\frac{n\pi x}{L}\right) + b_n \sin\left(\frac{n\pi x}{L}\right) \right) \]
Where:
- \(a_0\) is the average value of the function over one period,
- \(a_n\) and \(b_n\) are the Fourier coefficients given by:
\[
a_n = \frac{1}{L} \int_{-L}^{L} f(x) \cos\left(\frac{n\pi x}{L}\right) dx
\]
\[
b_n = \frac{1}{L} \int_{-L}^{L} f(x) \sin\left(\frac{n\pi x}{L}\right) dx
\]
For this specific problem, since the function is defined on \([-π, π]\), we have \(L = π\). The intervals need to be considered when setting up the integr
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 4 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)