2) Estimate 10 to within 1 decimal place by using Bisection to solve the equation x³ = 10 on the interval [2, 3]. Organize the results of all the calculations in the table below. You don't need to write down more than 5 decimal places.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
2) Estimate 10 to within 1 decimal place by using Bisection to solve the equation x³ = 10 on the interval [2, 3].
Organize the results of all the calculations in the table below. You don't need to write down more than 5 decimal places.
ai
f(a)
C₁
f (c₁)
b₁
f(b₁)
Half Interval
Length
Transcribed Image Text:2) Estimate 10 to within 1 decimal place by using Bisection to solve the equation x³ = 10 on the interval [2, 3]. Organize the results of all the calculations in the table below. You don't need to write down more than 5 decimal places. ai f(a) C₁ f (c₁) b₁ f(b₁) Half Interval Length
Expert Solution
Step 1: Finding the solution using bisection method

Here x3-10=0

Let fx=x3-10

x 2 3
fx -2 17

1st iteration :

a0=2c0=3

Here  and f(3)=17>0

 Now, Root lies between 2 and 3

Half length b0=2+32

f(b0)=f(2.5)=2.53-10=5.625>0


2nd iteration :

a1=2c1=b0=2.5

Here f(2)=-2<0 and f(2.5)=5.625>0

Half length b1=2+2.52=2.25

Now, Root lies between 2 and 2.5

f(b1)=f(2.25)=2.253-10=1.39062>0


3rd iteration :

a2=2c2=b1=2.25

Here f(2)=-2<0 and f(2.25)=1.39062>0

Now, Root lies between 2 and 2.25

Half length b2=2+2.252=2.125

f(b2)=f(2.125)=2.1253-10=-0.4043<0

4th iteration :

Here f(2.125)=-0.4043<0 and f(2.25)=1.39062>0

a3=b2=2.125c3=2.25

Now, Root lies between 2.125 and 2.25

Half length b3=2.125+2.252=2.1875

f(b3)=f(2.1875)=2.18753-10=0.46753>0


5th iteration :

Here f(2.125)=-0.4043<0 and f(2.1875)=0.46753>0

a4=2.125c4=b3=2.1875

Now, Root lies between 2.125 and 2.1875

Half length b4=2.125+2.18752=2.15625

f(b4)=f(2.15625)=2.156253-10=0.0253>0

6th iteration :

Here f(2.125)=-0.4043<0 and f(2.15625)=0.0253>0

a5=2.125c5=b4=2.15625

Now, Root lies between 2.125 and 2.15625

Half length b5=2.125+2.156262=2.14062

f(b5)=f(2.14062)=2.140623-10=-0.19107<0


7th iteration :

Here f(2.14062)=-0.19107<0 and f(2.15625)=0.0253>0

a6=b5=2.14062c6=2.1562

Now, Root lies between 2.14062 and 2.15625

Half length b6=2.14062+2.156252=2.14844

f(b6)=f(2.14844)=2.148443-10=-0.08328<0


8th iteration :

Here f(2.14844)=-0.08328<0 and f(2.15625)=0.0253>0

a7=b6=2.14844c7=2.15625

Now, Root lies between 2.14844 and 2.15625

b7=2.14844+2.156252=2.15234

f(b7)=f(2.15234)=2.152343-10=-0.02909<0


9th iteration :

Here f(2.15234)=-0.02909<0 and f(2.15625)=0.0253>0

a8=b7=2.15234c8=2.15625

Now, Root lies between 2.15234 and 2.15625

b8=2.15234+2.156252=2.1543

f(b8)=f(2.1543)=2.15433-10=-0.00192<0

10th iteration :

Here f(2.1543)=-0.00192<0 and f(2.15625)=0.0253>0


a9=b8=2.1542c3=2.15625
Now, Root lies between 2.1543 and 2.15625

Half length b9=2.1543+2.156252=2.15527

f(b9)=f(2.15527)=2.155273-10=0.01168>0

11th iteration :

Here f(2.1543)=-0.00192<0 and f(2.15527)=0.01168>0

a10=2.1543c10=b9=2.15527

Now, Root lies between 2.1543 and 2.15527

b10=2.1543+2.155272=2.15479

f(b10)=f(2.15479)=2.154793-10=0.00488>0


12th iteration :

Here f(2.1543)=-0.00192<0 and f(2.15479)=0.00488>0

a11=2.1543c11=b10=2.15479

Now, Root lies between 2.1543 and 2.15479

Half length b11=2.1543+2.154792=2.15454

f(b11)=f(2.15454)=2.154543-10=0.00148>0


13th iteration :

 Here f(2.1543)=-0.00192<0 and f(2.15454)=0.00148>0

a12=2.1543c12=b11=2.15454

Now, Root lies between 2.1543 and 2.15454

Half length b12=2.1543+2.154542=2.15442

f(b12)=f(2.15442)=2.154423-10=-0.00022<0


14th iteration :

Here f(2.15442)=-0.00022<0 and f(2.15454)=0.00148>0

a13=b12=2.15442c13=2.15454
Now, Root lies between 2.15442 and 2.15454

Half length b13=2.15442+2.154542=2.15448

f(b13)=f(2.15448)=2.154483-10=0.00063>0


15th iteration :

Here f(2.15442)=-0.00022<0 and f(2.15448)=0.00063>0

a14=2.15442c14=c13=2.15448

Now, Root lies between 2.15442 and 2.15448

b14=2.15442+2.154482=2.15445

f(b14)=f(2.15445)=2.154453-10=0.00021>0


16th iteration :

Here f(2.15442)=-0.00022<0 and f(2.15445)=0.00021>0

a15=2.15442c15=b15=2.15445

Now, Root lies between 2.15442 and 2.15445

b15=2.15442+2.154452=2.15443

f(b15)=f(2.15443)=2.154433-10=0<0

 

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,