2) Consider each distribution. Determine if it is a valid probability distribution or not and explain your answer. b. 1 P(x) 0.25 0.60 0.15 P(x) 0.25 0.60 0.20

MATLAB: An Introduction with Applications
6th Edition
ISBN:9781119256830
Author:Amos Gilat
Publisher:Amos Gilat
Chapter1: Starting With Matlab
Section: Chapter Questions
Problem 1P
icon
Related questions
Question
**Analyzing Probability Distribution Validity**

**Question:**  
Consider each distribution. Determine if it is a valid probability distribution or not and explain your answer.

**Distribution a:**

\[
\begin{array}{|c|c|c|c|}
\hline
x & 0 & 1 & 2 \\
\hline
P(x) & 0.25 & 0.60 & 0.15 \\
\hline
\end{array}
\]

**Distribution b:**

\[
\begin{array}{|c|c|c|c|}
\hline
x & 0 & 1 & 2 \\
\hline
P(x) & 0.25 & 0.60 & 0.20 \\
\hline
\end{array}
\]

**Explanation:**

For a probability distribution to be valid, the sum of all probabilities \( P(x) \) must equal 1.

- **Distribution a:**  
  \[
  P(x=0) + P(x=1) + P(x=2) = 0.25 + 0.60 + 0.15 = 1.00
  \]  
  The sum equals 1, so this is a valid probability distribution.

- **Distribution b:**  
  \[
  P(x=0) + P(x=1) + P(x=2) = 0.25 + 0.60 + 0.20 = 1.05
  \]  
  The sum exceeds 1, so this is not a valid probability distribution. 

Both distributions are evaluated on whether their probability values correctly sum up to 1. Only Distribution a meets this requirement.
Transcribed Image Text:**Analyzing Probability Distribution Validity** **Question:** Consider each distribution. Determine if it is a valid probability distribution or not and explain your answer. **Distribution a:** \[ \begin{array}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline P(x) & 0.25 & 0.60 & 0.15 \\ \hline \end{array} \] **Distribution b:** \[ \begin{array}{|c|c|c|c|} \hline x & 0 & 1 & 2 \\ \hline P(x) & 0.25 & 0.60 & 0.20 \\ \hline \end{array} \] **Explanation:** For a probability distribution to be valid, the sum of all probabilities \( P(x) \) must equal 1. - **Distribution a:** \[ P(x=0) + P(x=1) + P(x=2) = 0.25 + 0.60 + 0.15 = 1.00 \] The sum equals 1, so this is a valid probability distribution. - **Distribution b:** \[ P(x=0) + P(x=1) + P(x=2) = 0.25 + 0.60 + 0.20 = 1.05 \] The sum exceeds 1, so this is not a valid probability distribution. Both distributions are evaluated on whether their probability values correctly sum up to 1. Only Distribution a meets this requirement.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
MATLAB: An Introduction with Applications
MATLAB: An Introduction with Applications
Statistics
ISBN:
9781119256830
Author:
Amos Gilat
Publisher:
John Wiley & Sons Inc
Probability and Statistics for Engineering and th…
Probability and Statistics for Engineering and th…
Statistics
ISBN:
9781305251809
Author:
Jay L. Devore
Publisher:
Cengage Learning
Statistics for The Behavioral Sciences (MindTap C…
Statistics for The Behavioral Sciences (MindTap C…
Statistics
ISBN:
9781305504912
Author:
Frederick J Gravetter, Larry B. Wallnau
Publisher:
Cengage Learning
Elementary Statistics: Picturing the World (7th E…
Elementary Statistics: Picturing the World (7th E…
Statistics
ISBN:
9780134683416
Author:
Ron Larson, Betsy Farber
Publisher:
PEARSON
The Basic Practice of Statistics
The Basic Practice of Statistics
Statistics
ISBN:
9781319042578
Author:
David S. Moore, William I. Notz, Michael A. Fligner
Publisher:
W. H. Freeman
Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
Statistics
ISBN:
9781319013387
Author:
David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:
W. H. Freeman