(2) Apply inverse Laplace transform and find f(t) of the following: 6(5+3) S (5+1) (5+2) a) F(s) = b) F(S) = c) FIS) = 55²-25-3 (5²+1) (5² 25+5) 53+5² + 25+ 3 (5+1)² (5+2)²

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

How does one apply inverse laplace transform and find f(t) ?

**Problem 2: Inverse Laplace Transform**

Apply the inverse Laplace transform and find \( f(t) \) of the following expressions:

a) \[
F(s) = \frac{6(s + 3)}{5(s + 1)(s + 2)}
\]

b) \[
F(s) = \frac{5s^2 - 2s - 3}{(s^2 + 1)(s^2 - 2s + 5)}
\]

c) \[
F(s) = \frac{s^3 + s^2 + 2s + 3}{(s + 1)^2(s + 2)^2}
\]

d) \[
F(s) = \frac{2 - 2e^{-2s} - 4se^{-2s} + 2s^2e^{-2s}}{s^3}
\]

e) \[
F(s) = \frac{s}{(s + 2)^2 + 4}
\]
Transcribed Image Text:**Problem 2: Inverse Laplace Transform** Apply the inverse Laplace transform and find \( f(t) \) of the following expressions: a) \[ F(s) = \frac{6(s + 3)}{5(s + 1)(s + 2)} \] b) \[ F(s) = \frac{5s^2 - 2s - 3}{(s^2 + 1)(s^2 - 2s + 5)} \] c) \[ F(s) = \frac{s^3 + s^2 + 2s + 3}{(s + 1)^2(s + 2)^2} \] d) \[ F(s) = \frac{2 - 2e^{-2s} - 4se^{-2s} + 2s^2e^{-2s}}{s^3} \] e) \[ F(s) = \frac{s}{(s + 2)^2 + 4} \]
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 5 steps with 4 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,