2文 A- dyda. adyda...

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

find integral

dyda..
ून-
-yodystu...
2R
ndyda..
9.
Transcribed Image Text:dyda.. ून- -yodystu... 2R ndyda.. 9.
Expert Solution
Step 1

To evaluate the following integrals:

  1. A=02R0R2-x-R2dydx
  2. x=02R0R2-x-R2ydydx
  3. y=02R0R2-x-R2xdydx
Step 2

i. To evaluate A=02R0R2-x-R2dydx:

A=02R0R2-x-R2dydx    =02Ry0R2-x-R2dx    =02RR2-x-R2dxSubstitute u=x-Rdu=dx & x:02Ru:-RR     =-RRR2-u2duWe have a2-x2dx=xa2-x22+a22sin-1xa     =uR2-u22+R22sin-1uR-RR    =R22sin-11-R22sin-1-1    =R22π2-R22×-π2    =πR22      

Thus, A=02R0R2-x-R2dydx=πR22

steps

Step by step

Solved in 4 steps

Blurred answer
Knowledge Booster
Indefinite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,