2 1. Given a space curve a:1= [0,2m] → R³, such that a ()= a(), then a(t) is... Curve A. a closed D. not simple B. simple C. regular The

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Solve question 1

answer
1. Given a space curve a: 1 = [0,2m] → R³, such that a )= a), then a(t) is..
A. a closed
B. simple
C. regular
2. The torsion of a plane curve equals........
A. 1
B.0
C. not a constant
3. Given a metric matrix giy, then the inverse element g¹¹equals ..........
A. 22
D. - 921
0
B. 2.12
C. 911
g
9
4. The vector S = N₂ x T is called........ of a curve a lies on a surface M.
A. Principal normal B. intrinsic normal C. binormal
jny
D. principal tangent
5. The second fundamental form is calculated using.........
B. (X₁, Xij)
A. (X₁, X₂)
C.(N, Xij)
D. (T,Xi)
6. The pla
curve
D. not simple
D. -1
Transcribed Image Text:answer 1. Given a space curve a: 1 = [0,2m] → R³, such that a )= a), then a(t) is.. A. a closed B. simple C. regular 2. The torsion of a plane curve equals........ A. 1 B.0 C. not a constant 3. Given a metric matrix giy, then the inverse element g¹¹equals .......... A. 22 D. - 921 0 B. 2.12 C. 911 g 9 4. The vector S = N₂ x T is called........ of a curve a lies on a surface M. A. Principal normal B. intrinsic normal C. binormal jny D. principal tangent 5. The second fundamental form is calculated using......... B. (X₁, Xij) A. (X₁, X₂) C.(N, Xij) D. (T,Xi) 6. The pla curve D. not simple D. -1
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,