2 1 Let A = -4 -7 2 36 nd v: Compute Au and Av, and compare them with b. Is it 4 3 possible that at least one of u or v could be a least-squares solution of Ax=b? (Answer this without computing a least-squares solution.)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
### Linear Algebra Problem: Least-Squares Solution

---

**Problem Statement:**

Given the following matrices and vectors:

\[ A = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 36 \\ -4 \end{bmatrix}, \quad u = \begin{bmatrix} 7 \\ -8 \end{bmatrix}, \quad v = \begin{bmatrix} 3 \\ -8 \end{bmatrix} \]

1. Compute \( Au \) and \( Av \), and compare them with \( b \).
2. Is it possible that at least one of \( u \) or \( v \) could be a least-squares solution of \( Ax = b \)?
   
   (Answer this without computing a least-squares solution.)

---
**Step-by-Step Solution:**

1. **Matrix-Vector Multiplication:**

   To find \( Au \) and \( Av \), perform the matrix-vector multiplications:

   \[ Au = A \times u = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 7 \\ -8 \end{bmatrix} \]
   
   Compute each element of the resulting vector \( Au \):

   \[ Au = \begin{bmatrix} (2 \times 7) + (1 \times -8) \\ (-4 \times 7) + (-7 \times -8) \\ (4 \times 7) + (3 \times -8) \end{bmatrix} = \begin{bmatrix} 14 - 8 \\ -28 + 56 \\ 28 - 24 \end{bmatrix} = \begin{bmatrix} 6 \\ 28 \\ 4 \end{bmatrix} \]

   Similarly:

   \[ Av = A \times v = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 3 \\ -8 \end{bmatrix} \]

   Compute each element of the resulting vector \( Av \):

   \[ Av = \begin{b
Transcribed Image Text:### Linear Algebra Problem: Least-Squares Solution --- **Problem Statement:** Given the following matrices and vectors: \[ A = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 36 \\ -4 \end{bmatrix}, \quad u = \begin{bmatrix} 7 \\ -8 \end{bmatrix}, \quad v = \begin{bmatrix} 3 \\ -8 \end{bmatrix} \] 1. Compute \( Au \) and \( Av \), and compare them with \( b \). 2. Is it possible that at least one of \( u \) or \( v \) could be a least-squares solution of \( Ax = b \)? (Answer this without computing a least-squares solution.) --- **Step-by-Step Solution:** 1. **Matrix-Vector Multiplication:** To find \( Au \) and \( Av \), perform the matrix-vector multiplications: \[ Au = A \times u = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 7 \\ -8 \end{bmatrix} \] Compute each element of the resulting vector \( Au \): \[ Au = \begin{bmatrix} (2 \times 7) + (1 \times -8) \\ (-4 \times 7) + (-7 \times -8) \\ (4 \times 7) + (3 \times -8) \end{bmatrix} = \begin{bmatrix} 14 - 8 \\ -28 + 56 \\ 28 - 24 \end{bmatrix} = \begin{bmatrix} 6 \\ 28 \\ 4 \end{bmatrix} \] Similarly: \[ Av = A \times v = \begin{bmatrix} 2 & 1 \\ -4 & -7 \\ 4 & 3 \end{bmatrix} \times \begin{bmatrix} 3 \\ -8 \end{bmatrix} \] Compute each element of the resulting vector \( Av \): \[ Av = \begin{b
Expert Solution
steps

Step by step

Solved in 7 steps with 51 images

Blurred answer
Similar questions
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,