1A Find the rectangular coordinates of the point given in polar coordinates. (-9, – 180°) The rectangular coordinates are (Type an ordered pair.)

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### 1A

**Problem:**
Find the rectangular coordinates of the point given in polar coordinates.

Given Polar Coordinates:
\[
(-9, -180^\circ)
\]

**Solution:**
The rectangular coordinates are \(\boxed{\phantom{0}}\) (Type an ordered pair.)

### 1B

**Problem:**
Use a sum or difference formula to find the exact value of the trigonometric function.

Given Function:
\[
\sec\left(-\frac{\pi}{12}\right)
\]

**Solution:**
\[
\sec\left(-\frac{\pi}{12}\right) = \boxed{\phantom{0}}
\]
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

### 1C

**Problem:**
Show that:
\[
\sin^4 \theta = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta).
\]

**Question:**
Which of the following four statements establishes the identity?

**Options:**

A.
\[
\sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 - \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta)
\]

B.
\[
\sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 + \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta)
\]

C.
\[
\sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 + \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta)
\]

D.
\
Transcribed Image Text:### 1A **Problem:** Find the rectangular coordinates of the point given in polar coordinates. Given Polar Coordinates: \[ (-9, -180^\circ) \] **Solution:** The rectangular coordinates are \(\boxed{\phantom{0}}\) (Type an ordered pair.) ### 1B **Problem:** Use a sum or difference formula to find the exact value of the trigonometric function. Given Function: \[ \sec\left(-\frac{\pi}{12}\right) \] **Solution:** \[ \sec\left(-\frac{\pi}{12}\right) = \boxed{\phantom{0}} \] (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) ### 1C **Problem:** Show that: \[ \sin^4 \theta = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta). \] **Question:** Which of the following four statements establishes the identity? **Options:** A. \[ \sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 - \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta) \] B. \[ \sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 + \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta) \] C. \[ \sin^4 \theta = \left(\sin^2 2\theta \right)^2 = \left(\frac{1 + \cos(20\theta)}{2}\right)^2 = \frac{3}{8} - \frac{1}{2} \cos(20\theta) + \frac{1}{8} \cos(40\theta) \] D. \
Expert Solution
Step 1

Use polar to rectangular coordinate formula

steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning