19.25. Let C be the boundary of a square whose sides lie along the lines x = ±3 and y +3. For the positive sense of integration, evaluate each of the following integrals by using CIF or the derivative formula (19.10): (a) f. e2 COS Z dz. in/2 (b) . dz. (c) P. dz. fe z(22 + 10) (z – )(2² – 10) 2 - (d) £. sinh z dz. cosh z dz. z4 COS Z dz. 23 (f) ez COs z dz. z + in COs z (i) (h) P.E- in)² (g) dz. (z – in/2)² dz. C sinh 7 cosh 7

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

hi

My question is about Complex Integral.

I showed the question in the upload photo.

parts(e,f,g)

Thank you very much !

19.25. Let C be the boundary of a square whose sides lie along the lines
+3 and y
the following integrals by using CIF or the derivative formula (19.10):
x =
+3. For the positive sense of integration, evaluate each of
(a) £.
e
COS Z
dz.
iT/2
(b) Pz(22 + 10)
dz. (c) P.Tz- i)(2²
dz.
10)
sinh z
dz.
z4
cosh z
dz.
z4
(f)
COS Z
dz.
23
(d)
(e)
e?
(h) P. T - in)²
COS z
dz.
C z+ iT
COS Z
(g)
dz.
(z – in /2)2
(i)
dz.
sinh z
(k) P. T – in/2)²
ez
cosh z
(6) f
dz.
- 5z + 4
dz.
dz. (1) 9.- 1/2)²
22
(z – T
/2)2
22
(m) P. Tz– 2)(2² – 10)
dz.
Transcribed Image Text:19.25. Let C be the boundary of a square whose sides lie along the lines +3 and y the following integrals by using CIF or the derivative formula (19.10): x = +3. For the positive sense of integration, evaluate each of (a) £. e COS Z dz. iT/2 (b) Pz(22 + 10) dz. (c) P.Tz- i)(2² dz. 10) sinh z dz. z4 cosh z dz. z4 (f) COS Z dz. 23 (d) (e) e? (h) P. T - in)² COS z dz. C z+ iT COS Z (g) dz. (z – in /2)2 (i) dz. sinh z (k) P. T – in/2)² ez cosh z (6) f dz. - 5z + 4 dz. dz. (1) 9.- 1/2)² 22 (z – T /2)2 22 (m) P. Tz– 2)(2² – 10) dz.
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 4 images

Blurred answer
Knowledge Booster
Definite Integral
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,