19. Find the distance from to the line given by span 20. You showed earlier that- is an orthogonal set. Normalize the vectors in this set to create an orthonormal set.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Need help with these two questions 19-20
### Vector Spaces and Orthogonality

16. **Orthogonality of Set B**  
   Show that the set \( B = \left\{ \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \right\} \) is an orthogonal set.

17. **Orthogonal Projection**  
   Find the orthogonal projection of the vector \( x = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) onto span \( B \), where \( B \) is the set from problem 16.

18. **Vector Decomposition**  
   Write \( \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix} \) as a sum of two vectors, where one vector is in span \( \begin{pmatrix} -5 \\ 4 \\ 0 \end{pmatrix} \) and the other vector is orthogonal to \( \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix} \).

19. **Distance to a Line**  
   Find the distance from \( \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) to the line given by span \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \).

20. **Normalization of an Orthogonal Set**  
   You showed earlier that \( \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}, \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} \right\} \) is an orthogonal set. Normalize the vectors in this set to create an orthonormal set.
Transcribed Image Text:### Vector Spaces and Orthogonality 16. **Orthogonality of Set B** Show that the set \( B = \left\{ \begin{pmatrix} 1 \\ 3 \\ 5 \end{pmatrix} \right\} \) is an orthogonal set. 17. **Orthogonal Projection** Find the orthogonal projection of the vector \( x = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \) onto span \( B \), where \( B \) is the set from problem 16. 18. **Vector Decomposition** Write \( \begin{pmatrix} 3 \\ 5 \\ -1 \end{pmatrix} \) as a sum of two vectors, where one vector is in span \( \begin{pmatrix} -5 \\ 4 \\ 0 \end{pmatrix} \) and the other vector is orthogonal to \( \begin{pmatrix} 5 \\ 4 \\ 0 \end{pmatrix} \). 19. **Distance to a Line** Find the distance from \( \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \) to the line given by span \( \begin{pmatrix} 2 \\ 3 \end{pmatrix} \). 20. **Normalization of an Orthogonal Set** You showed earlier that \( \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ \sqrt{2} \end{pmatrix}, \begin{pmatrix} -\sqrt{2} \\ 1 \end{pmatrix} \right\} \) is an orthogonal set. Normalize the vectors in this set to create an orthonormal set.
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,