Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
Related questions
Question
![**Problem 19:** Find the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\). Show all necessary work to receive full credit.
**Solution:**
To find the distance \(d\) from a point \((x_1, y_1, z_1)\) to a plane \(Ax + By + Cz + D = 0\), use the formula:
\[
d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}
\]
**Given:**
- Point \((x_1, y_1, z_1) = (3, -2, 7)\)
- Plane equation \(4x - 6y + z = 5\)
First, rewrite the plane equation in the form \(Ax + By + Cz + D = 0\):
\[4x - 6y + z - 5 = 0\]
Thus,
- \(A = 4\)
- \(B = -6\)
- \(C = 1\)
- \(D = -5\)
Substitute these values into the distance formula:
\[
d = \frac{|4(3) - 6(-2) + 1(7) - 5|}{\sqrt{4^2 + (-6)^2 + 1^2}}
\]
Calculate the numerator:
\[
|4(3) - 6(-2) + 1(7) - 5| = |12 + 12 + 7 - 5| = |26|
\]
Calculate the denominator:
\[
\sqrt{4^2 + (-6)^2 + 1^2} = \sqrt{16 + 36 + 1} = \sqrt{53}
\]
Thus, the distance is:
\[
d = \frac{26}{\sqrt{53}}
\]
Therefore, the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\) is \(\frac{26}{\sqrt{53}}\).](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F3ba91fa8-c4da-44a3-a037-923d1d08ef86%2F9f97895a-eeb8-4f66-956e-be45cbb0681e%2Fb4iq8af_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 19:** Find the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\). Show all necessary work to receive full credit.
**Solution:**
To find the distance \(d\) from a point \((x_1, y_1, z_1)\) to a plane \(Ax + By + Cz + D = 0\), use the formula:
\[
d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}
\]
**Given:**
- Point \((x_1, y_1, z_1) = (3, -2, 7)\)
- Plane equation \(4x - 6y + z = 5\)
First, rewrite the plane equation in the form \(Ax + By + Cz + D = 0\):
\[4x - 6y + z - 5 = 0\]
Thus,
- \(A = 4\)
- \(B = -6\)
- \(C = 1\)
- \(D = -5\)
Substitute these values into the distance formula:
\[
d = \frac{|4(3) - 6(-2) + 1(7) - 5|}{\sqrt{4^2 + (-6)^2 + 1^2}}
\]
Calculate the numerator:
\[
|4(3) - 6(-2) + 1(7) - 5| = |12 + 12 + 7 - 5| = |26|
\]
Calculate the denominator:
\[
\sqrt{4^2 + (-6)^2 + 1^2} = \sqrt{16 + 36 + 1} = \sqrt{53}
\]
Thus, the distance is:
\[
d = \frac{26}{\sqrt{53}}
\]
Therefore, the distance from the point \((3, -2, 7)\) to the plane \(4x - 6y + z = 5\) is \(\frac{26}{\sqrt{53}}\).
Expert Solution

This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images

Recommended textbooks for you

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning