19-70. Evaluating limits Find the following limits or state that they do not exist. Assume a, b, c, and k are fixed real numbers. 34. lim x+3 42. lim w→1 56. lim x→1 x² 2x 3 62. lim 54. lim x - 3 1 w² - W - X 1 4x + 5 3 cos x - 1 x+0 cos²x - 1 - w→3¯ w² |w - 3| W²1) 7w + 12

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
19-70. Evaluating limits Find the following limits or state that they do not exist. Assume a, b, c, and k are fixed real
numbers.
34. lim
I→3
56. lim
x² 2x
42. Tim (2²-²1)
w→1
W
x − 3
1
x→1 √√√4x + 5-3
62. lim
64. lim
COS I 1
x→0 cos²x - 1
3
I
|w3|
w+3 w² - 7w+12
Transcribed Image Text:19-70. Evaluating limits Find the following limits or state that they do not exist. Assume a, b, c, and k are fixed real numbers. 34. lim I→3 56. lim x² 2x 42. Tim (2²-²1) w→1 W x − 3 1 x→1 √√√4x + 5-3 62. lim 64. lim COS I 1 x→0 cos²x - 1 3 I |w3| w+3 w² - 7w+12
Expert Solution
Step 1

34.  x2 - 2x - 3 = ( x - 3) ( x + 1) 

limx3x2-2x-3x-3=limx3(x-3)(x+1)x-3=limx3 x + 1 = 3 + 1 = 4

42.

 limw1 (1w2 - w - 1w-1)= lim (w1 1w(w-1)-1w-1)                                            = limw1 1 -ww(w-1)                                            = limw1 -1w = -1

56. 

 limx1x-14x+5 - 3= limx1x-14x+5 - 3  ×4x+5 + 34x+5 + 3                                = limx1 (x-1)(4x+5 + 3)4x + 5 - 9                                 = limx1 (x-1)(4x+5 + 3)4(x - 1)                                = limx1 4x+5 + 34                                = 64=32

 

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,