1800 978 1850 1,262 1900 1,650 1950 2,519 1960 2,982 1970 3,692 1980 4,435 1985 4,831 1990 5,263 1995 5,674 2000 6,070 2005 6,454 2010 6,864

Mathematics For Machine Technology
8th Edition
ISBN:9781337798310
Author:Peterson, John.
Publisher:Peterson, John.
Chapter87: An Introduction To G- And M-codes For Cnc Programming
Section: Chapter Questions
Problem 16A
icon
Related questions
Question
How long did it take for the population to reach double that amount
Bookmarks
Window
Help
A mccs.brightspace.com
ollege
COVID-19 | My SMCC
B Student Activity Notebook for Lesson 2 - Ma..
https://mccs.brightspace.cc
in millions)
in millions)
10,000 BCE
1
1800
978
9,000 BCE
1850
1,262
8,000 BCE
1900
1,650
7,000 BCE
7
1950
2,519
6,000 BCE
10
1960
2,982
5,000 BCE
15
1970
3,692
4,000 BCE
20
1980
4,435
3,000 BCE
25
1985
4,831
2,000 BCE
35
1990
5,263
1,000 BCE
50
1995
5,674
500 BCE
100
2000
6,070
AD 1
200
2005
6,454
1750
791
2010
6,864
10
tv
@
$
%
5
Transcribed Image Text:Bookmarks Window Help A mccs.brightspace.com ollege COVID-19 | My SMCC B Student Activity Notebook for Lesson 2 - Ma.. https://mccs.brightspace.cc in millions) in millions) 10,000 BCE 1 1800 978 9,000 BCE 1850 1,262 8,000 BCE 1900 1,650 7,000 BCE 7 1950 2,519 6,000 BCE 10 1960 2,982 5,000 BCE 15 1970 3,692 4,000 BCE 20 1980 4,435 3,000 BCE 25 1985 4,831 2,000 BCE 35 1990 5,263 1,000 BCE 50 1995 5,674 500 BCE 100 2000 6,070 AD 1 200 2005 6,454 1750 791 2010 6,864 10 tv @ $ % 5
Expert Solution
Step 1

Taking the rate of increment as exponential first fits an exponential function to the given data.

Here Assume 1980 is t = 0 then 2010 will be t =30

The curve to be fitted is y=aebx

taking logarithm on both sides, we get
log10(y)=log10(a)+bxlog10(e)

Y=A+Bx where Y=log10(y),A=log10(a),B=blog10(e)

which linear in Y,x
So the corresponding normal equations are
Y=nA+Bx  xY=Ax+Bx2


The values are calculated using the following table

x y Y=log10(y) x2 xY
0 4435 3.647 0 0
1 4831 3.684 1 3.684
2 5263 3.721 4 7.442
3 5674 3.754 9 11.262
4 6070 3.783 16 15.133
5 6454 3.81 25 19.049
6 6864 3.837 36 23.019
--- --- --- --- ---
x=21 y=39591 Y=26.236 x2=91 xY=79.59



Substituting these values in the normal equations
7A+21B=26.236

21A+91B=79.59

Solving these two equations using the Elimination method,


we obtain A=3.654,B=0.032

a=antilog10(A)=antilog10(3.654)=4502.98

and b=Blog10(e)=0.0320.434=0.073

Now substituting these values in the equation is y=aebx, we get

y=4502.98e0.073x

Here y is the population and x is the time.

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Similar questions
  • SEE MORE QUESTIONS
Recommended textbooks for you
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Glencoe Algebra 1, Student Edition, 9780079039897…
Glencoe Algebra 1, Student Edition, 9780079039897…
Algebra
ISBN:
9780079039897
Author:
Carter
Publisher:
McGraw Hill
Algebra & Trigonometry with Analytic Geometry
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:
9781133382119
Author:
Swokowski
Publisher:
Cengage
Trigonometry (MindTap Course List)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
Intermediate Algebra
Intermediate Algebra
Algebra
ISBN:
9781285195728
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning
Algebra for College Students
Algebra for College Students
Algebra
ISBN:
9781285195780
Author:
Jerome E. Kaufmann, Karen L. Schwitters
Publisher:
Cengage Learning