18. r(t) = (tan-¹ t, 2e², 8tet), t=0 19. r(t)= cos ti+ 3t j+ 2 sin 2t k, t=01 Answer 20. r(t) = sin ti+ cos² tj+tan² tk, t = */4 21. If r(t) = (t, t², t³), find r' (t), T (1), r" (t), and r' (t) x r" (t).

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Subject-advance maths

18, 20, & 21 only
17, 18, 19 and 20 Find the unit tangent vector T (t) at the point with the given value of the parameter t.
17. r(t)-(-2,1+3+1)=2
Answer +
18. r(t) = (tan-¹ t, 2e², 8te²), t=0
19. r(t)= cos ti+ 3t j+ 2 sin 2t k, t=0
Answer+
20. r(t) = sin ti+ cos² tj+tan² tk, t= /4
21. Ifr (t) = (t, t², t³), find r' (t), T (1), r" (t), and r' (t) x r" (t).
Transcribed Image Text:18, 20, & 21 only 17, 18, 19 and 20 Find the unit tangent vector T (t) at the point with the given value of the parameter t. 17. r(t)-(-2,1+3+1)=2 Answer + 18. r(t) = (tan-¹ t, 2e², 8te²), t=0 19. r(t)= cos ti+ 3t j+ 2 sin 2t k, t=0 Answer+ 20. r(t) = sin ti+ cos² tj+tan² tk, t= /4 21. Ifr (t) = (t, t², t³), find r' (t), T (1), r" (t), and r' (t) x r" (t).
Expert Solution
steps

Step by step

Solved in 4 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,