18. 19. The curve y = x³ – 3x² + 2 has an inflection point at the point: a) P(1, 0) b) P(-1, -2) c) P(1,4) The interval where the curve y = a) x < 1 b) never ex+1 ex-1 d) none of these is decreasing is: c) (-∞0,00) d) none of these

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

Pls help ASAP in all

18.
19.
The curve y = x³ — 3x² + 2 has an inflection point at the point:
a) P(1, 0)
b) P(-1, -2)
c) P(1,4)
The interval where the curve y =
a) x < 1
b) never
ex + 1
ex-1
d) none of these
is decreasing is:
c) (-∞0,00)
d) none of these
Transcribed Image Text:18. 19. The curve y = x³ — 3x² + 2 has an inflection point at the point: a) P(1, 0) b) P(-1, -2) c) P(1,4) The interval where the curve y = a) x < 1 b) never ex + 1 ex-1 d) none of these is decreasing is: c) (-∞0,00) d) none of these
Expert Solution
Step 1: ''Introduction to the solution''

18) Given that : y equals left parenthesis x cubed minus 3 x squared plus 2 right parenthesis............ left parenthesis 1 right parenthesis

We  have  to  find  the  point  of inflection of the  given function.

Differentiating (1) with respect to 'x' we get, fraction numerator d y over denominator d x end fraction equals 3 x squared minus 6 x

Again, differentiating with respect to 'x' to obtain, fraction numerator d squared y over denominator d x squared end fraction equals left parenthesis 6 x minus 6 right parenthesis

For  point  of  inflection, fraction numerator d squared y over denominator d x squared end fraction equals left parenthesis 6 x minus 6 right parenthesis equals 0
rightwards double arrow x equals 1

Putting x equals 1  in left parenthesis 1 right parenthesis spaceto  obtain  the point  of inflection of f  is   P left parenthesis 1 comma 0 right parenthesis. So,. option(a)  is  Correct.

steps

Step by step

Solved in 3 steps with 12 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,