(18) If a, be Z, then (a + b)3 = a3 + b3 (mod 3).
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Number 18
![31. Suppose the division algorithm applied to a and b yields a = qb +r. Prove
about how a direct proof would work. In most cases contrapositive is easier.)
A. Prove the following statements with contrapositive proof. (In each case, think
Contraposttive Proof
136
Exercises for Chapter 5
1. Suppose neZ. If n is even, then n is even.
2. Suppose n eZ. If n2 is odd, then n is odd.
S. Suppose a, be Z. If a2(b2 -2b) is odd, then a and b are odd
4. Suppose a, b,c € Z. If a does not divide be, then a does not divid,.
5. Suppose x ER. If x2 + 5x<0 then x<0.
6. Suppose x ER. If x -x> 0 then x> -1.
7. Suppose a,beZ. If both ab and a +b are even, then both a and
8. Suppose x ER. If x - 4x* +3x3-x2 + 3x -420, then x 20.
9. Suppose n e Z. If 3 n2, then 3łn.
10. Suppose x,y,z € Z and x#0. If xyz, then xy and x z.
11. Suppose x,y€ Z. If x2(y+3) is even, then x is even or y is odd.
12. Suppose a € Z. If a? is not divisible by 4, then a is odd.
13. Suppose xER. If r+7x³ + 5x > x* + x2 + 8, then x > 0.
B. Prove the following statements using either direct or contrapositive proof.
14. If a,beZ and a and b have the same parity, then 3a +7 and 76-4 do not.
15. Suppose xe Z. If x -1 is even, then x is odd.
16. Suppose x, y e Z. If x+ y is even, then x and y have the same parity.
17. Ifn is odd, then 81 (n2- 1).
18) If a,beZ, then (a+b) = a³ + b3 (mod 3).
19. Let a,b, CEZ and n e N. If a = b (mod n) and a = c (mod n), then c =b (mod n).
20. If a eZ and a = 1 (mod 5), then a? = 1 (mod 5).
21. Let a,beZ and ne N. If a =b (mod n), then a =b (mod n).
22. Let a e Z, neN. If a has remainder r when divided by n, then a =r (mod n).
23. Let a,be Z and neN. If a =b (mod n), then a2 = ab (mod n).
(24, If a = b (mod n) and c = d (mod n), then ac = bd (mod n).
25. Let n e N. If 2"-1 is prime, then n is prime.
26. If n 24-1 for keN, then every entry in Row n of Pascal's Triangle 1s ode
27. If a = 0 (mod 4) or a = 1 (mod 4), then () is even.
28. If ne Z, then 4 (n2-3).
29. If integers a and b are not both zero, then ged(a, b) = gcd(a-6,01.
30. If a = b (mod n), then ged(a,n)= gcd(b,n).
%3D
%3D
god(a b)](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fd06cff55-e1fa-4bcb-ab93-6fc7f7940672%2F96442f91-fcff-442d-b74b-05b5ecb41e3a%2Fi8b0n1_processed.jpeg&w=3840&q=75)
Transcribed Image Text:31. Suppose the division algorithm applied to a and b yields a = qb +r. Prove
about how a direct proof would work. In most cases contrapositive is easier.)
A. Prove the following statements with contrapositive proof. (In each case, think
Contraposttive Proof
136
Exercises for Chapter 5
1. Suppose neZ. If n is even, then n is even.
2. Suppose n eZ. If n2 is odd, then n is odd.
S. Suppose a, be Z. If a2(b2 -2b) is odd, then a and b are odd
4. Suppose a, b,c € Z. If a does not divide be, then a does not divid,.
5. Suppose x ER. If x2 + 5x<0 then x<0.
6. Suppose x ER. If x -x> 0 then x> -1.
7. Suppose a,beZ. If both ab and a +b are even, then both a and
8. Suppose x ER. If x - 4x* +3x3-x2 + 3x -420, then x 20.
9. Suppose n e Z. If 3 n2, then 3łn.
10. Suppose x,y,z € Z and x#0. If xyz, then xy and x z.
11. Suppose x,y€ Z. If x2(y+3) is even, then x is even or y is odd.
12. Suppose a € Z. If a? is not divisible by 4, then a is odd.
13. Suppose xER. If r+7x³ + 5x > x* + x2 + 8, then x > 0.
B. Prove the following statements using either direct or contrapositive proof.
14. If a,beZ and a and b have the same parity, then 3a +7 and 76-4 do not.
15. Suppose xe Z. If x -1 is even, then x is odd.
16. Suppose x, y e Z. If x+ y is even, then x and y have the same parity.
17. Ifn is odd, then 81 (n2- 1).
18) If a,beZ, then (a+b) = a³ + b3 (mod 3).
19. Let a,b, CEZ and n e N. If a = b (mod n) and a = c (mod n), then c =b (mod n).
20. If a eZ and a = 1 (mod 5), then a? = 1 (mod 5).
21. Let a,beZ and ne N. If a =b (mod n), then a =b (mod n).
22. Let a e Z, neN. If a has remainder r when divided by n, then a =r (mod n).
23. Let a,be Z and neN. If a =b (mod n), then a2 = ab (mod n).
(24, If a = b (mod n) and c = d (mod n), then ac = bd (mod n).
25. Let n e N. If 2"-1 is prime, then n is prime.
26. If n 24-1 for keN, then every entry in Row n of Pascal's Triangle 1s ode
27. If a = 0 (mod 4) or a = 1 (mod 4), then () is even.
28. If ne Z, then 4 (n2-3).
29. If integers a and b are not both zero, then ged(a, b) = gcd(a-6,01.
30. If a = b (mod n), then ged(a,n)= gcd(b,n).
%3D
%3D
god(a b)
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)