(18) Find the ratio in which the join of the points A(12, –5) and B(3,4) is cut by the line r (3i – 11j) = 0. Show that the line joining the origin to the point dividing AB externally in the same ratio is perpendicular to the line r- (3i – 11j) = 0.

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
(18) Find the ratio in which the join of the points A(12, –5) and
B(3, 4) is cut by the line r (3i – 11j) = 0. Show that the line
joining the origin to the point dividing AB externally in the
same ratio is perpendicular to the line r - (3i – 11j) = 0.
(19) Find the equations of the sides of the square which has the point
(-1, 1) as one vertex and the line r (3i + j) – 3 = 0 for one
diagonal.
(20) The points A(3, –1), B(-2, 4), C(-1,7) are three vertices of
the quadrilateral ABCD. Given that the triangle ADC is the
reflection in the line AC of triangle ABC, find the position
vector of D.
(21) Find the reflection of the point (2, 1) in the line with equation
r: (5i – j) + 3 = 0. Hence find the reflection in L of the line
r:(i - j) –1 = 0.
(22) Find the mirror images of the point B(3, 4) and the line
3i + 4j + t(13i + j) in the line r (3i +7j) +2 = 0.
Transcribed Image Text:(18) Find the ratio in which the join of the points A(12, –5) and B(3, 4) is cut by the line r (3i – 11j) = 0. Show that the line joining the origin to the point dividing AB externally in the same ratio is perpendicular to the line r - (3i – 11j) = 0. (19) Find the equations of the sides of the square which has the point (-1, 1) as one vertex and the line r (3i + j) – 3 = 0 for one diagonal. (20) The points A(3, –1), B(-2, 4), C(-1,7) are three vertices of the quadrilateral ABCD. Given that the triangle ADC is the reflection in the line AC of triangle ABC, find the position vector of D. (21) Find the reflection of the point (2, 1) in the line with equation r: (5i – j) + 3 = 0. Hence find the reflection in L of the line r:(i - j) –1 = 0. (22) Find the mirror images of the point B(3, 4) and the line 3i + 4j + t(13i + j) in the line r (3i +7j) +2 = 0.
(1) Find the perpendicular distances of
(a) the point (-6, 2) from the line r (5i+ 12j) = 7;
(b) the point (3, 4) from the line r - (3i + 4j) = 10;
(e) the point (2, -3) from the line r (i – 5j) – 1 = 0;
(d) the origin from the line r - (7ị – 3j) – 29 = 0.
(2) Find the position vector of of the foot of the perpendicular from
the point with position vector đị – 2j to the line r-(2i – 3) = 1.
(3) Find the length of the altitude of the triangle A(2, 1), B(–1,3), C(-4, –3)
from B to AC.
(4) If Q is the foot of the perpendicular from (8,7) to the line
joining A(3, 6) to B(9, 2), find the position vector of Q, and the
ratio in which Q divides AB.
(5) P and Q are the feet of the perpendiculars from A(0, 5) and
B(-6,0) to the line r:(-i+2;) = 4. Find
(a) the equations of AP and BQ.
the distance PQ,
(c) the position vector of the point of intersection of AQ with
the r-axis.
(6) Find the distances between the following pairs of parallel lines:
(a) r - (i + j) + 7 = 0, r · (i +¿) – 11 = 0;
(b) r- (2i – 3) + 6 = 0, r · (di – 6) +5 = 0;
(c) r • (4i – 3) – 9 = 0, r · (di – 3) – 24 = 0;
(d) r = i+j+s(4i –i). r = 4ị + 5j +t(8į – 25)
(7) Find the equations of the bisectors of the angles between the
following pairs of lines and, in each case, discriminate between
them:
(a) r- (2i + j) + 4 = 0, r · (2i – 4j) – 7 = 0;
(b) r- (3i + 4j) + 5 = 0, r - (5i + 12j) + 13 = 0;
(d) r- (3i + 4) – 12 = 0, r - (3i – j) – 5 = 0;
(e) r- (24i +7j) = 20, r- (di – 3) = 2.
(8) Find the equation of the bisectors of the angles between the line
joining the points with position vectors -3i – 9j. 2i + 3j and
the line meeting the r- and y- axes at the points with position
vectors 3i and 4j.
1
2
(9) Find the equation of the line, which is such that the axis of 1
bisects the angle between it and the line r · (2i + 5j) = 18.
(10) If y = mx bisects an angle between the lines y = m,1, y = m3a,
show that
(m – m,)(1+ mm,) + (m – m,)(1+ mm,) = 0,
and deduce that the two bisectors are given by the roots of the
equation
(m, + ma)m² + 2(1 – m,mą]m – (m, + m2) = 0.
Show that the two values of m given by the above equation
determine perpendicular lines. Show also that if m, = 1/m,
then the bisectors are y =1, y = -1.
(11) The position vectors of the vertices of a triangle are
a = -i+j. b = Ti – 2j. c = 5i + 3j.
Find the length of one side of the triangle and the length of the
altitude to that side and hence compute the area of the triangle.
Transcribed Image Text:(1) Find the perpendicular distances of (a) the point (-6, 2) from the line r (5i+ 12j) = 7; (b) the point (3, 4) from the line r - (3i + 4j) = 10; (e) the point (2, -3) from the line r (i – 5j) – 1 = 0; (d) the origin from the line r - (7ị – 3j) – 29 = 0. (2) Find the position vector of of the foot of the perpendicular from the point with position vector đị – 2j to the line r-(2i – 3) = 1. (3) Find the length of the altitude of the triangle A(2, 1), B(–1,3), C(-4, –3) from B to AC. (4) If Q is the foot of the perpendicular from (8,7) to the line joining A(3, 6) to B(9, 2), find the position vector of Q, and the ratio in which Q divides AB. (5) P and Q are the feet of the perpendiculars from A(0, 5) and B(-6,0) to the line r:(-i+2;) = 4. Find (a) the equations of AP and BQ. the distance PQ, (c) the position vector of the point of intersection of AQ with the r-axis. (6) Find the distances between the following pairs of parallel lines: (a) r - (i + j) + 7 = 0, r · (i +¿) – 11 = 0; (b) r- (2i – 3) + 6 = 0, r · (di – 6) +5 = 0; (c) r • (4i – 3) – 9 = 0, r · (di – 3) – 24 = 0; (d) r = i+j+s(4i –i). r = 4ị + 5j +t(8į – 25) (7) Find the equations of the bisectors of the angles between the following pairs of lines and, in each case, discriminate between them: (a) r- (2i + j) + 4 = 0, r · (2i – 4j) – 7 = 0; (b) r- (3i + 4j) + 5 = 0, r - (5i + 12j) + 13 = 0; (d) r- (3i + 4) – 12 = 0, r - (3i – j) – 5 = 0; (e) r- (24i +7j) = 20, r- (di – 3) = 2. (8) Find the equation of the bisectors of the angles between the line joining the points with position vectors -3i – 9j. 2i + 3j and the line meeting the r- and y- axes at the points with position vectors 3i and 4j. 1 2 (9) Find the equation of the line, which is such that the axis of 1 bisects the angle between it and the line r · (2i + 5j) = 18. (10) If y = mx bisects an angle between the lines y = m,1, y = m3a, show that (m – m,)(1+ mm,) + (m – m,)(1+ mm,) = 0, and deduce that the two bisectors are given by the roots of the equation (m, + ma)m² + 2(1 – m,mą]m – (m, + m2) = 0. Show that the two values of m given by the above equation determine perpendicular lines. Show also that if m, = 1/m, then the bisectors are y =1, y = -1. (11) The position vectors of the vertices of a triangle are a = -i+j. b = Ti – 2j. c = 5i + 3j. Find the length of one side of the triangle and the length of the altitude to that side and hence compute the area of the triangle.
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Knowledge Booster
Cartesian Coordinates
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,