17-20 (a) Find the unit tangent and unit normal vectors T(t) and N(t). (b) Use Formula 9 to find the curvature. 17. r(t) = (1, 3 cos t, 3 sin t) 18. r(t) = (t², sin t - t cos t, cost + t sin t), *> 0 19. r(t) =(√2t, e', e¯¹) 20. r(t) = (1, 11², 1²)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

19

17-20
(b) Use Formula 9 to find the curvature.
(a) Find the unit tangent and unit normal vectors T(t) and N(t).
17. r(t) = (1, 3 cos t, 3 sin t)
18. r(t) = (t², sint -t cos t, cost + t sin t), *> 0
19. r(t) =(√2t, e', e¯¹)
20. r(t) = (t, ½t², t²)
ups bri VIMAXE
21-23 Use Theorem 10 to find the curvature.
21. r(t) = t³ j + t² k
22. r(t) = ti + t² j + e' k
23. r(t) = √√61² i + 2t j + 2t³ k
point (1, 0, 0).
24. Find the curvature of r(t) = (t², In t, t In t) at the
31
27-29 Use Formula 11 to find the curvature.
27. y = x^
SA
25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1).
os t. 7
26. Graph the curve with parametric equations x = cos t,
point (1, 0, 0).
y = sin t, z = sin 5t and find the curvature at the
28. y
8 BAUDA
Transcribed Image Text:17-20 (b) Use Formula 9 to find the curvature. (a) Find the unit tangent and unit normal vectors T(t) and N(t). 17. r(t) = (1, 3 cos t, 3 sin t) 18. r(t) = (t², sint -t cos t, cost + t sin t), *> 0 19. r(t) =(√2t, e', e¯¹) 20. r(t) = (t, ½t², t²) ups bri VIMAXE 21-23 Use Theorem 10 to find the curvature. 21. r(t) = t³ j + t² k 22. r(t) = ti + t² j + e' k 23. r(t) = √√61² i + 2t j + 2t³ k point (1, 0, 0). 24. Find the curvature of r(t) = (t², In t, t In t) at the 31 27-29 Use Formula 11 to find the curvature. 27. y = x^ SA 25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1). os t. 7 26. Graph the curve with parametric equations x = cos t, point (1, 0, 0). y = sin t, z = sin 5t and find the curvature at the 28. y 8 BAUDA
17-20
(b) Use Formula 9 to find the curvature.
(a) Find the unit tangent and unit normal vectors T(t) and N(t).
17. r(t) = (1, 3 cos t, 3 sin t)
18. r(t) = (t², sint -t cos t, cost + t sin t), *> 0
19. r(t) =(√2t, e', e¯¹)
20. r(t) = (t, ½t², t²)
ups bri VIMAXE
21-23 Use Theorem 10 to find the curvature.
21. r(t) = t³ j + t² k
22. r(t) = ti + t² j + e' k
23. r(t) = √√61² i + 2t j + 2t³ k
point (1, 0, 0).
24. Find the curvature of r(t) = (t², In t, t In t) at the
31
27-29 Use Formula 11 to find the curvature.
27. y = x^
SA
25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1).
os t. 7
26. Graph the curve with parametric equations x = cos t,
point (1, 0, 0).
y = sin t, z = sin 5t and find the curvature at the
28. y
8 BAUDA
Transcribed Image Text:17-20 (b) Use Formula 9 to find the curvature. (a) Find the unit tangent and unit normal vectors T(t) and N(t). 17. r(t) = (1, 3 cos t, 3 sin t) 18. r(t) = (t², sint -t cos t, cost + t sin t), *> 0 19. r(t) =(√2t, e', e¯¹) 20. r(t) = (t, ½t², t²) ups bri VIMAXE 21-23 Use Theorem 10 to find the curvature. 21. r(t) = t³ j + t² k 22. r(t) = ti + t² j + e' k 23. r(t) = √√61² i + 2t j + 2t³ k point (1, 0, 0). 24. Find the curvature of r(t) = (t², In t, t In t) at the 31 27-29 Use Formula 11 to find the curvature. 27. y = x^ SA 25. Find the curvature of r(t) = (t, t², t³) at the point (1, 1, 1). os t. 7 26. Graph the curve with parametric equations x = cos t, point (1, 0, 0). y = sin t, z = sin 5t and find the curvature at the 28. y 8 BAUDA
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,