16. Let f(x) = 5x¹ and g(x) = e²z+x. If h is the function defined by h(x) = f(g(x)), which of gives a correct expression for h'(x)? (A) 20(g(x))³ = 20 (e²x + x)³ (B) 20(g(x))³ = 20 (2e²a + 1)³ (C) 20(g(x))³ g'(x) = 20 (e²z+x)³ (2e² + 1) (D) 5(g(x)) = 5(2e²z + 1)^

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
16
16. Let f(x) = 5x4 and g(x) = e2 + æ. If h is the function defined by h(x) = f(g(x)), which of the following
gives a correct expression for h'(x) ?
(A) 20(g(x))³ = 20(e2* + a)³
(B) 20(g'(x))³ = 20(2e2x + 1)3
(C) 20 (g(x))³ . g'(x) = 20(e2z + x)³ . (2e2 + 1)
(D) 5(g'(x))³ = 5(2e2* + 1) 1
О А
О в
О с
Transcribed Image Text:16. Let f(x) = 5x4 and g(x) = e2 + æ. If h is the function defined by h(x) = f(g(x)), which of the following gives a correct expression for h'(x) ? (A) 20(g(x))³ = 20(e2* + a)³ (B) 20(g'(x))³ = 20(2e2x + 1)3 (C) 20 (g(x))³ . g'(x) = 20(e2z + x)³ . (2e2 + 1) (D) 5(g'(x))³ = 5(2e2* + 1) 1 О А О в О с
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,