16. Evaluate ft tan5 x sec¹ xdx.

Calculus: Early Transcendentals
8th Edition
ISBN:9781285741550
Author:James Stewart
Publisher:James Stewart
Chapter1: Functions And Models
Section: Chapter Questions
Problem 1RCC: (a) What is a function? What are its domain and range? (b) What is the graph of a function? (c) How...
icon
Related questions
Question
### Problem 16: Integration of Trigonometric Function

**Problem Statement:**
Evaluate the integral 
\[ \int \tan^5 x \sec^4 x \, dx. \]

**Solution:**

Let's solve this integral by using substitution. We will use \( u = \tan x \), which implies \( du = \sec^2 x \, dx \).

Rewrite the integral in terms of \( u \):
\[ \int \tan^5 x \sec^4 x \, dx. \]

Since \( u = \tan x \), we have \( u^5 = \tan^5 x \). Also, \( \sec^4 x = \sec^2 x \cdot \sec^2 x = \left(\frac{du}{dx}\right) \cdot \sec^2 x \) and \( dx = \frac{1}{\sec^2 x} \, du \).

Therefore, the integral becomes:
\[ \int u^5 \sec^2 x \, du. \]

However, this requires modifying. Since \( du = \sec^2 x \, dx \), let's write everything in terms of \( u \):
\[ \int u^5 \sec^2 x \cdot \sec^2 x \, dx \]
\[ = \int u^5 \cdot \sec^4 x \cdot dx. \]

Note that \( \sec^2 x = 1 + \tan^2 x \), leading us to rewrite secant squared terms using \( u \):
\[ \sec^4 x = (1 + u^2)^2. \]

So we have:
\[ \int u^5 (1 + u^2)^2 \, du. \]

Now, expand \( (1 + u^2)^2 \):
\[ (1 + u^2)^2 = 1 + 2u^2 + u^4. \]

The integral thus becomes:
\[ \int u^5 (1 + 2u^2 + u^4) \, du. \]

Distribute \( u^5 \) through the polynomial:
\[ = \int (u^5 + 2u^7 + u^9) \, du. \]

Integrate each term separately:
\[ \int u^5 \, du + 2 \int u^7 \, du +
Transcribed Image Text:### Problem 16: Integration of Trigonometric Function **Problem Statement:** Evaluate the integral \[ \int \tan^5 x \sec^4 x \, dx. \] **Solution:** Let's solve this integral by using substitution. We will use \( u = \tan x \), which implies \( du = \sec^2 x \, dx \). Rewrite the integral in terms of \( u \): \[ \int \tan^5 x \sec^4 x \, dx. \] Since \( u = \tan x \), we have \( u^5 = \tan^5 x \). Also, \( \sec^4 x = \sec^2 x \cdot \sec^2 x = \left(\frac{du}{dx}\right) \cdot \sec^2 x \) and \( dx = \frac{1}{\sec^2 x} \, du \). Therefore, the integral becomes: \[ \int u^5 \sec^2 x \, du. \] However, this requires modifying. Since \( du = \sec^2 x \, dx \), let's write everything in terms of \( u \): \[ \int u^5 \sec^2 x \cdot \sec^2 x \, dx \] \[ = \int u^5 \cdot \sec^4 x \cdot dx. \] Note that \( \sec^2 x = 1 + \tan^2 x \), leading us to rewrite secant squared terms using \( u \): \[ \sec^4 x = (1 + u^2)^2. \] So we have: \[ \int u^5 (1 + u^2)^2 \, du. \] Now, expand \( (1 + u^2)^2 \): \[ (1 + u^2)^2 = 1 + 2u^2 + u^4. \] The integral thus becomes: \[ \int u^5 (1 + 2u^2 + u^4) \, du. \] Distribute \( u^5 \) through the polynomial: \[ = \int (u^5 + 2u^7 + u^9) \, du. \] Integrate each term separately: \[ \int u^5 \, du + 2 \int u^7 \, du +
Expert Solution
steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781285741550
Author:
James Stewart
Publisher:
Cengage Learning
Thomas' Calculus (14th Edition)
Thomas' Calculus (14th Edition)
Calculus
ISBN:
9780134438986
Author:
Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:
PEARSON
Calculus: Early Transcendentals (3rd Edition)
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:
9780134763644
Author:
William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:
PEARSON
Calculus: Early Transcendentals
Calculus: Early Transcendentals
Calculus
ISBN:
9781319050740
Author:
Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:
W. H. Freeman
Precalculus
Precalculus
Calculus
ISBN:
9780135189405
Author:
Michael Sullivan
Publisher:
PEARSON
Calculus: Early Transcendental Functions
Calculus: Early Transcendental Functions
Calculus
ISBN:
9781337552516
Author:
Ron Larson, Bruce H. Edwards
Publisher:
Cengage Learning