16. Assume that f(x) = cotx. Then 2 a. 1 f'(2) b. -1 11 c. 2 d. -2 4 e.none

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

pleasssse solve questionnnnnn  16

15. l im
x-1
a.
1
2
tan
a. 2
-1
16. Assume that f(x) =
a. 1
17. If g(x) ≤ f(x) ≤
a. - 3
x-1
a. 1.02
T
4
a. 6
1
b. 1
-1
1-x
- cotx. Then
2
d
18. If f(x)=√x is one to one function, then
1*4)=
b. -1
d. -2
>
if lim f(x) and g(x) satisfy squeezing theorem when x→ 1, then lim g(x) is
b. 3
e. non
c. 6
d. -6
b. 6
b. - 6
-(ƒ~¹ (3)) =
b. 1.03
dx
C.
19. Let f(x) = x² + ax + b. If f(x) has extreme value 2 at x = 4, then the value of a and b are:
a. a = 6, b= 13
b. a = -6, b = -13
d. a = -6, b=13
20. approximate (2.01)² by linear approximation is
C.
c. 2
a = 6, b = -13
21. If
If ƒ‹ƒ(x) + 4) dx = 10, †ƒ(x) dx = 5 then f(x) dx =
-1
c. 4
c. 4.04
d.
d. 4
d. 8.12
e. nc
d.-3
e.none
e. nor
e. a
e. no
e.
Transcribed Image Text:15. l im x-1 a. 1 2 tan a. 2 -1 16. Assume that f(x) = a. 1 17. If g(x) ≤ f(x) ≤ a. - 3 x-1 a. 1.02 T 4 a. 6 1 b. 1 -1 1-x - cotx. Then 2 d 18. If f(x)=√x is one to one function, then 1*4)= b. -1 d. -2 > if lim f(x) and g(x) satisfy squeezing theorem when x→ 1, then lim g(x) is b. 3 e. non c. 6 d. -6 b. 6 b. - 6 -(ƒ~¹ (3)) = b. 1.03 dx C. 19. Let f(x) = x² + ax + b. If f(x) has extreme value 2 at x = 4, then the value of a and b are: a. a = 6, b= 13 b. a = -6, b = -13 d. a = -6, b=13 20. approximate (2.01)² by linear approximation is C. c. 2 a = 6, b = -13 21. If If ƒ‹ƒ(x) + 4) dx = 10, †ƒ(x) dx = 5 then f(x) dx = -1 c. 4 c. 4.04 d. d. 4 d. 8.12 e. nc d.-3 e.none e. nor e. a e. no e.
Expert Solution
steps

Step by step

Solved in 4 steps with 11 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,