15 1. If 180° < 0 < 270° and sin 0 = -, find cos . O 2V17 17 17/2 2 17/2 2/17 17 -
Trigonometry (11th Edition)
11th Edition
ISBN:9780134217437
Author:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Chapter1: Trigonometric Functions
Section: Chapter Questions
Problem 1RE:
1. Give the measures of the complement and the supplement of an angle measuring 35°.
Related questions
Question
in image
![### Problem Statement
1. If \( 180^\circ < \theta < 270^\circ \) and \( \sin \theta = -\frac{15}{17} \), find \( \cos \frac{\theta}{2} \).
### Solution Choices
1. \( \frac{2 \sqrt{17}}{17} \)
2. \( \frac{17\sqrt{2}}{2} \)
3. \( -\frac{17\sqrt{2}}{2} \)
4. \( -\frac{2 \sqrt{17}}{17} \)
### Explanation
We are given that the angle \( \theta \) falls within the third quadrant (between 180 degrees and 270 degrees) and that the sine of the angle \( \theta \) is \( -\frac{15}{17} \). Based on this information, we need to determine the value of \( \cos \frac{\theta}{2} \).
1. **Determine the Cosine of \(\theta\):**
Since we know \(\sin \theta\), we can use the Pythagorean identity to find \(\cos \theta\):
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Plugging in the given sine value:
\[
\left(-\frac{15}{17}\right)^2 + \cos^2 \theta = 1
\]
\[
\frac{225}{289} + \cos^2 \theta = 1
\]
\[
\cos^2 \theta = 1 - \frac{225}{289}
\]
\[
\cos^2 \theta = \frac{289 - 225}{289}
\]
\[
\cos \theta = \pm \frac{\sqrt{64}}{17} = \pm \frac{8}{17}
\]
Since \(\theta\) is in the third quadrant, the cosine is negative:
\[
\cos \theta = -\frac{8}{17}
\]
2. **Use the Half-Angle Formula:**
Use the half-angle formula for cosine to find \( \cos \frac{\theta}{2} \):
\[
\cos \frac{\theta}{](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F93030cd0-8340-4952-b4ed-2e3575fbf451%2F7a2bcf26-1a02-40bd-9188-c3b4eeddc117%2F8xm274j_processed.png&w=3840&q=75)
Transcribed Image Text:### Problem Statement
1. If \( 180^\circ < \theta < 270^\circ \) and \( \sin \theta = -\frac{15}{17} \), find \( \cos \frac{\theta}{2} \).
### Solution Choices
1. \( \frac{2 \sqrt{17}}{17} \)
2. \( \frac{17\sqrt{2}}{2} \)
3. \( -\frac{17\sqrt{2}}{2} \)
4. \( -\frac{2 \sqrt{17}}{17} \)
### Explanation
We are given that the angle \( \theta \) falls within the third quadrant (between 180 degrees and 270 degrees) and that the sine of the angle \( \theta \) is \( -\frac{15}{17} \). Based on this information, we need to determine the value of \( \cos \frac{\theta}{2} \).
1. **Determine the Cosine of \(\theta\):**
Since we know \(\sin \theta\), we can use the Pythagorean identity to find \(\cos \theta\):
\[
\sin^2 \theta + \cos^2 \theta = 1
\]
Plugging in the given sine value:
\[
\left(-\frac{15}{17}\right)^2 + \cos^2 \theta = 1
\]
\[
\frac{225}{289} + \cos^2 \theta = 1
\]
\[
\cos^2 \theta = 1 - \frac{225}{289}
\]
\[
\cos^2 \theta = \frac{289 - 225}{289}
\]
\[
\cos \theta = \pm \frac{\sqrt{64}}{17} = \pm \frac{8}{17}
\]
Since \(\theta\) is in the third quadrant, the cosine is negative:
\[
\cos \theta = -\frac{8}{17}
\]
2. **Use the Half-Angle Formula:**
Use the half-angle formula for cosine to find \( \cos \frac{\theta}{2} \):
\[
\cos \frac{\theta}{
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 1 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, trigonometry and related others by exploring similar questions and additional content below.Recommended textbooks for you
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (11th Edition)](https://www.bartleby.com/isbn_cover_images/9780134217437/9780134217437_smallCoverImage.gif)
Trigonometry (11th Edition)
Trigonometry
ISBN:
9780134217437
Author:
Margaret L. Lial, John Hornsby, David I. Schneider, Callie Daniels
Publisher:
PEARSON
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781305652224/9781305652224_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781305652224
Author:
Charles P. McKeague, Mark D. Turner
Publisher:
Cengage Learning
![Algebra and Trigonometry](https://www.bartleby.com/isbn_cover_images/9781938168376/9781938168376_smallCoverImage.gif)
![Trigonometry (MindTap Course List)](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
Trigonometry (MindTap Course List)
Trigonometry
ISBN:
9781337278461
Author:
Ron Larson
Publisher:
Cengage Learning