14. Use Dual simplex to solve the following LPP. Max. Z = X₁ + 2X₂ + 3X3 Subject to X₁-X₂ + X3 ≥ 4 X₁ + X₂ + 2X3 ≤8 where X₁-3X3 ≥ 2 X1, X2, X3 ≥ 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

please do not provide solution in image format thank you!

LPP-DUAL SIMPLEX METHOD-V
14. Use Dual simplex to solve the following LPP.
Max.
Subject to
Z = X₁ + 2X₂ + 3X3
X₁-X₂ + X3 ≥ 4
X₁ + X₂ + 2X3 ≤8
X₁-3X3 ≥ 2
where
X₁, X₂, X3 ≥ 0
15. Use Dual Simplex to solve the following LPP.
Min.
Z = 48X₁ + 40X2
Subject to
3X₁ + 2X₂ ≥ 7
X₁ + X₂ ≥ 5
where
X₁, X₂ ≥ 0
16. Use Dual Simplex to solve the following LPP.
Min.
Z=36X₁ + 60X2 + 45X3
Subject to
X₁+ 2X₂ + 2X3 ≥ 40
2X₁ + X₂ + 5X3 ≥ 25
X₁ + 4X2 + X3 ≥ 50
X₁, X₂, X3 ≥ 0
where
8.23
(Ans. Dual Simplex Method fails)
(Ans. X₁ = 0, X₂=5, Min. Z = 200)
(Ans. X₁ = 0, X₂ = 10, X3= 10, Min. Z-1050)
Transcribed Image Text:LPP-DUAL SIMPLEX METHOD-V 14. Use Dual simplex to solve the following LPP. Max. Subject to Z = X₁ + 2X₂ + 3X3 X₁-X₂ + X3 ≥ 4 X₁ + X₂ + 2X3 ≤8 X₁-3X3 ≥ 2 where X₁, X₂, X3 ≥ 0 15. Use Dual Simplex to solve the following LPP. Min. Z = 48X₁ + 40X2 Subject to 3X₁ + 2X₂ ≥ 7 X₁ + X₂ ≥ 5 where X₁, X₂ ≥ 0 16. Use Dual Simplex to solve the following LPP. Min. Z=36X₁ + 60X2 + 45X3 Subject to X₁+ 2X₂ + 2X3 ≥ 40 2X₁ + X₂ + 5X3 ≥ 25 X₁ + 4X2 + X3 ≥ 50 X₁, X₂, X3 ≥ 0 where 8.23 (Ans. Dual Simplex Method fails) (Ans. X₁ = 0, X₂=5, Min. Z = 200) (Ans. X₁ = 0, X₂ = 10, X3= 10, Min. Z-1050)
Expert Solution
steps

Step by step

Solved in 4 steps with 5 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,