14. Determine whether f: ZxZ → Z is onto if a) f(m, n) = 2m - n. b) f(m, n) = m² = n². c) f(m, n) = m +n + 1. d) f(m, n) = \m| – |n|. e) f(m, n) = m² - 4. —
14. Determine whether f: ZxZ → Z is onto if a) f(m, n) = 2m - n. b) f(m, n) = m² = n². c) f(m, n) = m +n + 1. d) f(m, n) = \m| – |n|. e) f(m, n) = m² - 4. —
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
14a
![**Problem 14: Determine Whether the Function is Onto**
Let \( f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \).
You need to determine whether the function \( f \) is onto for the following cases:
a) \( f(m, n) = 2m - n \).
b) \( f(m, n) = m^2 - n^2 \).
c) \( f(m, n) = m + n + 1 \).
d) \( f(m, n) = |m| - |n| \).
e) \( f(m, n) = m^2 - 4 \).
---
Explanation for educational purposes:
An "onto" function, or surjective function, means that for every element \( z \) in the codomain \( \mathbb{Z} \), there is at least one element \((m, n)\) in the domain \(\mathbb{Z} \times \mathbb{Z}\) such that \( f(m, n) = z \). You will need to evaluate each given function to see if this property holds.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fc6389447-1237-4af0-b5c6-eb1260425b55%2F1fa27752-4e9e-44d5-a368-272a061f2e23%2Fobh31vt_processed.jpeg&w=3840&q=75)
Transcribed Image Text:**Problem 14: Determine Whether the Function is Onto**
Let \( f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \).
You need to determine whether the function \( f \) is onto for the following cases:
a) \( f(m, n) = 2m - n \).
b) \( f(m, n) = m^2 - n^2 \).
c) \( f(m, n) = m + n + 1 \).
d) \( f(m, n) = |m| - |n| \).
e) \( f(m, n) = m^2 - 4 \).
---
Explanation for educational purposes:
An "onto" function, or surjective function, means that for every element \( z \) in the codomain \( \mathbb{Z} \), there is at least one element \((m, n)\) in the domain \(\mathbb{Z} \times \mathbb{Z}\) such that \( f(m, n) = z \). You will need to evaluate each given function to see if this property holds.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
This is a popular solution!
Trending now
This is a popular solution!
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)