139 6 I Isomorphisms 10. Let G be a group. Prove that the mapping a(g) = g1 for all g in G is an automorphism if and only if G is Abelian. 11. If g and h are elements from a group, prove that h 12. Find two groups G and H such that G H, but Aut(G) Aut(H). 13. Prove the assertion in Example 12 that the inner automorphisms and o, of Di are distinct. PRa 14. Find Aut(Z) 15. If G is a group, prove that Aut(G) and Inn(G) 16. If a group G is isomorphic to H, prove that Aut(G) is isomorphic to Aut(H). are groups. 17. Suppose belongs to Aut(Z,) and a is relatively prime to n. If d(a) b, determine a formula for p(x). 18. Let H be the subgroup of all rotations in D. and let d be an auto- morphism of D. Prove that (H) = H. (In words, an automor- phism of D, carries rotations to rotations.) 19. Let H {BES,IB(1) 1} and K that H is isomorphic to K. Is the same true if S, is replaced by S where n 3? 20. Show that Z has infinitely many subgroups isomorphic to Z. п 11 n n 2}. Prove {BE SIB(2) п> 21. Let n be an even integer greater than 2 and let o be an automor- phism of D. Determine (R, 80). 22. Let be an automorphism of a group G. Prove that H {x EG (x) =x} is a subgroup of G 23. Give an example of a cyclic group of smallest order that contains a subgroup isomorphic to Z12 and a subgroup isomorphic to Z20 No need to prove anything, but explain your reasoning. 24. Suppose that d: Z20Z20 is an automorphism and (5) 5. What are the possibilities for d(x)? 25. Identify a group G that has subgroups isomorphic to Z for all pos- itive integers n. 26. Prove that the mapping from U(16) to itself given by x -x3 is an automorphism. What about xx and x -x? Generalize. 27. Let r E U(n). Prove that the mapping a: Z> Z defined by a(s) = sr mod n for all s in Z, is an automorphism of Z (This exercise is referred to in this chapter.) n' 28. The group aEZis isomorphic to what familiar group? What if Z is replaced by R? U
Percentage
A percentage is a number indicated as a fraction of 100. It is a dimensionless number often expressed using the symbol %.
Algebraic Expressions
In mathematics, an algebraic expression consists of constant(s), variable(s), and mathematical operators. It is made up of terms.
Numbers
Numbers are some measures used for counting. They can be compared one with another to know its position in the number line and determine which one is greater or lesser than the other.
Subtraction
Before we begin to understand the subtraction of algebraic expressions, we need to list out a few things that form the basis of algebra.
Addition
Before we begin to understand the addition of algebraic expressions, we need to list out a few things that form the basis of algebra.
10.
Trending now
This is a popular solution!
Step by step
Solved in 5 steps with 4 images