137. dx V1 +9x²
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
Can you explain to me on the following problem how you convert theta to arc sin for the answer please solve # 137
![## Completing the Square and Trigonometric Substitution
### Completing the Square
Use the technique of completing the square to express each trinomial as the square of a binomial.
131. \(4x^2 - 4x + 1\)
132. \(2x^2 - 8x + 3\)
133. \(-x^2 - 2x + 4\)
### Trigonometric Substitution
Integrate using the method of trigonometric substitution. Express the final answer in terms of the variable.
134. \(\int \frac{dx}{\sqrt{4 - x^2}}\)
135. \(\int \frac{dx}{\sqrt{x^2 - a^2}}\)
136. \(\int \sqrt{4 - x^2} \, dx\)
137. \(\int \frac{dx}{\sqrt{1 + 9x^2}}\)
138. \(\int \frac{x^2 \, dx}{\sqrt{1 - x^2}}\)
There are no graphs or diagrams included in this content. Some exercises are highlighted in color, which might indicate their importance or that they are to be given special attention in solving.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F03fd5f25-eded-4046-9c65-9e89b5e28b89%2F68854c4b-e36f-409c-9258-bb9a6eb85ea2%2F6bogemk_processed.jpeg&w=3840&q=75)
Transcribed Image Text:## Completing the Square and Trigonometric Substitution
### Completing the Square
Use the technique of completing the square to express each trinomial as the square of a binomial.
131. \(4x^2 - 4x + 1\)
132. \(2x^2 - 8x + 3\)
133. \(-x^2 - 2x + 4\)
### Trigonometric Substitution
Integrate using the method of trigonometric substitution. Express the final answer in terms of the variable.
134. \(\int \frac{dx}{\sqrt{4 - x^2}}\)
135. \(\int \frac{dx}{\sqrt{x^2 - a^2}}\)
136. \(\int \sqrt{4 - x^2} \, dx\)
137. \(\int \frac{dx}{\sqrt{1 + 9x^2}}\)
138. \(\int \frac{x^2 \, dx}{\sqrt{1 - x^2}}\)
There are no graphs or diagrams included in this content. Some exercises are highlighted in color, which might indicate their importance or that they are to be given special attention in solving.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
Step 1
The given integral is as follows.
Rewrite the integral is
Substitute,
Find the derivative.
Step by step
Solved in 2 steps
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)