13. On circle R, mQT-mTS-120°. Find m/QRS and mZQTS. Explain each step of your solution. Figure not drawn to scale.

Elementary Geometry For College Students, 7e
7th Edition
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Alexander, Daniel C.; Koeberlein, Geralyn M.
ChapterP: Preliminary Concepts
SectionP.CT: Test
Problem 1CT
icon
Related questions
Question
Title: Solving Circle Geometry Problems

---

**Problem 13:**

Given:
- On circle \( R \), \( m\overset{\frown}{QT} = m\overset{\frown}{TS} = 120^\circ \).
- Find \( m\angle QRS \) and \( m\angle QTS \).

**Solution Explanation:**

1. **Understanding the Given Information:**
   - Two arcs, \( \overset{\frown}{QT} \) and \( \overset{\frown}{TS} \), both measure \( 120^\circ \).
   - The circle is centered at point \( R \).

2. **Identifying Key Angles and Arcs:**
   - Since the sum of the angles around the center is \( 360^\circ \), this means that \( \overset{\frown}{QS} \), the remaining arc, will be:
     \[
     360^\circ - (120^\circ + 120^\circ) = 120^\circ
     \]
   - Thus, we have three arcs: \( QT = 120^\circ \), \( TS = 120^\circ \), and \( QS = 120^\circ \).

3. **Finding \( m\angle QRS \):**
   - \( \angle QRS \) is an inscribed angle that intercepts \( \overset{\frown}{QS} \).
   - Inscribed angles are half the measure of the arc they intercept.
   - So,
     \[
     m\angle QRS = \frac{1}{2} \times 120^\circ = 60^\circ
     \]

4. **Finding \( m\angle QTS \):**
   - Similarly, \( \angle QTS \) intercepts the same \( \overset{\frown}{QS} \).
   - Thus,
     \[
     m\angle QTS = \frac{1}{2} \times 120^\circ = 60^\circ
     \]

**Conclusion:**

- \( m\angle QRS = 60^\circ \)
- \( m\angle QTS = 60^\circ \)

**Visual Explanation:**

In the provided diagram (Figure not drawn to scale), points \( Q \), \( T \), and \( S \) lie on the circumference of the circle with \( R \) as
Transcribed Image Text:Title: Solving Circle Geometry Problems --- **Problem 13:** Given: - On circle \( R \), \( m\overset{\frown}{QT} = m\overset{\frown}{TS} = 120^\circ \). - Find \( m\angle QRS \) and \( m\angle QTS \). **Solution Explanation:** 1. **Understanding the Given Information:** - Two arcs, \( \overset{\frown}{QT} \) and \( \overset{\frown}{TS} \), both measure \( 120^\circ \). - The circle is centered at point \( R \). 2. **Identifying Key Angles and Arcs:** - Since the sum of the angles around the center is \( 360^\circ \), this means that \( \overset{\frown}{QS} \), the remaining arc, will be: \[ 360^\circ - (120^\circ + 120^\circ) = 120^\circ \] - Thus, we have three arcs: \( QT = 120^\circ \), \( TS = 120^\circ \), and \( QS = 120^\circ \). 3. **Finding \( m\angle QRS \):** - \( \angle QRS \) is an inscribed angle that intercepts \( \overset{\frown}{QS} \). - Inscribed angles are half the measure of the arc they intercept. - So, \[ m\angle QRS = \frac{1}{2} \times 120^\circ = 60^\circ \] 4. **Finding \( m\angle QTS \):** - Similarly, \( \angle QTS \) intercepts the same \( \overset{\frown}{QS} \). - Thus, \[ m\angle QTS = \frac{1}{2} \times 120^\circ = 60^\circ \] **Conclusion:** - \( m\angle QRS = 60^\circ \) - \( m\angle QTS = 60^\circ \) **Visual Explanation:** In the provided diagram (Figure not drawn to scale), points \( Q \), \( T \), and \( S \) lie on the circumference of the circle with \( R \) as
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Similar questions
Recommended textbooks for you
Elementary Geometry For College Students, 7e
Elementary Geometry For College Students, 7e
Geometry
ISBN:
9781337614085
Author:
Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:
Cengage,
Elementary Geometry for College Students
Elementary Geometry for College Students
Geometry
ISBN:
9781285195698
Author:
Daniel C. Alexander, Geralyn M. Koeberlein
Publisher:
Cengage Learning