-12e-7t u(t), Consider the differential equation y" (t) + 11y'(t) + 30y(t) with initial conditions y(0) = -13, and y' (0) = 82. Find the Laplace transform of the solution Y(s). Write the solution as a single fraction in s Y(s) = help (formulas) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form s-p where c is a constant and the root p is a constant. Both c and p may be complex. Y(s) + + Find the inverse Laplace transform of Y(s). (Remember to use u(t) or step(t). y(t) = L" {Y(s)} = help (formulas)

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
Consider the differential equation y" (t) + 11y'(t) + 30y(t) = –12e-tu(t),
with initial conditions y(0) = -13, and y' (0) = 82.
Find the Laplace transform of the solution Y(s). Write the solution as a single fraction in s
Y(s)
help (formulas)
Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form , where c is a constant and the
root p is a constant. Both c and p may be complex.
Y(s)
+
+
Find the inverse Laplace transform of Y(s). (Remember to use u(t) or step(t).
y(t) = L1 {Y(s)} =
help (formulas)
Transcribed Image Text:Consider the differential equation y" (t) + 11y'(t) + 30y(t) = –12e-tu(t), with initial conditions y(0) = -13, and y' (0) = 82. Find the Laplace transform of the solution Y(s). Write the solution as a single fraction in s Y(s) help (formulas) Find the partial fraction decomposition of Y(s). Enter all factors as first order terms in s, that is, all terms should be of the form , where c is a constant and the root p is a constant. Both c and p may be complex. Y(s) + + Find the inverse Laplace transform of Y(s). (Remember to use u(t) or step(t). y(t) = L1 {Y(s)} = help (formulas)
Expert Solution
steps

Step by step

Solved in 3 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,