12. The value of c that satisfy the mean value theorem for f(x)= a. √√3-1 b. 1 c. √3 C. x-1 on [-2, 0] is d.-√3+1
12. The value of c that satisfy the mean value theorem for f(x)= a. √√3-1 b. 1 c. √3 C. x-1 on [-2, 0] is d.-√3+1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
pleasssse solve questionnnnnn 12
![4. The inverse function of y=x²-2x+2 is
- ƒ^²(x)=-1+√x-1
c. f¹(x) = −1+√√√x-1
5. cos`¹ (cos ³) =
a.
6. lim
бя
5
a.-3
== x+1
a. 0
√√3x² +1
8. If y=x√ then y' (4) =
(2)
+
2√2
a. 2
a. 2√2
x2-1
+21
7. If y ==—ƒ(x²), ƒ' (4) = 3, ƒ(4) = 12, then y' (2) =
a. √3-1
b. 4
бл
b. 6,707
7
b. 3
3
(+)
2√3
9. if f(x) is even function and g(x) is odd function then ](/(x).g(x) + 4) dx =
a. 18
b. 24
c. 12
b. 33
b. 0
b. f¹(x)=-1-√√x-1
d. ƒ^¯¹(x)=1+√√x−1 x21
c
c.-√3
b. 1
c. 3
c. 8+4ln4
10. if In x³ = 6log2-3log 4 then x =
a. e²
c. 1
11. The slope of the tangent line to the curve xe +3 x² = y² + 8x-1 at (1, 0) =
b.-2
c. 12
12. The value of c that satisfy the mean value theorem for f(x) =
C.
c. √3
d. 1
x-1
x5-1
d. √3
d. 2
ut
d. - 1
-on [-2, 0] is
d. 0
d. e
d.-√3 +1](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2Fe7f5e0b8-e55a-4bb3-94eb-cf6d91142078%2F9b5fbe71-98df-422c-a35d-9d67b745a231%2F2etd2y_processed.jpeg&w=3840&q=75)
Transcribed Image Text:4. The inverse function of y=x²-2x+2 is
- ƒ^²(x)=-1+√x-1
c. f¹(x) = −1+√√√x-1
5. cos`¹ (cos ³) =
a.
6. lim
бя
5
a.-3
== x+1
a. 0
√√3x² +1
8. If y=x√ then y' (4) =
(2)
+
2√2
a. 2
a. 2√2
x2-1
+21
7. If y ==—ƒ(x²), ƒ' (4) = 3, ƒ(4) = 12, then y' (2) =
a. √3-1
b. 4
бл
b. 6,707
7
b. 3
3
(+)
2√3
9. if f(x) is even function and g(x) is odd function then ](/(x).g(x) + 4) dx =
a. 18
b. 24
c. 12
b. 33
b. 0
b. f¹(x)=-1-√√x-1
d. ƒ^¯¹(x)=1+√√x−1 x21
c
c.-√3
b. 1
c. 3
c. 8+4ln4
10. if In x³ = 6log2-3log 4 then x =
a. e²
c. 1
11. The slope of the tangent line to the curve xe +3 x² = y² + 8x-1 at (1, 0) =
b.-2
c. 12
12. The value of c that satisfy the mean value theorem for f(x) =
C.
c. √3
d. 1
x-1
x5-1
d. √3
d. 2
ut
d. - 1
-on [-2, 0] is
d. 0
d. e
d.-√3 +1
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 3 steps with 3 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)