12. For each n € N, define An = [0,1 + ½] and B₂ = [0, 1 − 1]. - (a) Prove that Uº₁ An is an interval, and describe this interval explicitly. n=1 (b) Prove that 1 An is an interval, and describe this interval explicitly. =1 n=1 (c) Prove that U-₁ B₁ is an interval, and describe this interval explicitly. (d) Prove that ₁ B₂ is an interval, and describe this interval explicitly. n=1
12. For each n € N, define An = [0,1 + ½] and B₂ = [0, 1 − 1]. - (a) Prove that Uº₁ An is an interval, and describe this interval explicitly. n=1 (b) Prove that 1 An is an interval, and describe this interval explicitly. =1 n=1 (c) Prove that U-₁ B₁ is an interval, and describe this interval explicitly. (d) Prove that ₁ B₂ is an interval, and describe this interval explicitly. n=1
Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
Related questions
Question
please show work
![**Problem 12.** For each \( n \in \mathbb{N} \), define \( A_n = \left[0, 1 + \frac{1}{n}\right] \) and \( B_n = \left[0, 1 - \frac{1}{n}\right] \).
**(a)** Prove that \( \bigcup_{n=1}^{\infty} A_n \) is an interval, and describe this interval explicitly.
**(b)** Prove that \( \bigcap_{n=1}^{\infty} A_n \) is an interval, and describe this interval explicitly.
**(c)** Prove that \( \bigcup_{n=1}^{\infty} B_n \) is an interval, and describe this interval explicitly.
**(d)** Prove that \( \bigcap_{n=1}^{\infty} B_n \) is an interval, and describe this interval explicitly.](/v2/_next/image?url=https%3A%2F%2Fcontent.bartleby.com%2Fqna-images%2Fquestion%2F912a24df-6035-40a5-a35d-878c2e7f673f%2F8f992900-9c9b-4053-ae07-cb1055c745b6%2F9uo5an_processed.png&w=3840&q=75)
Transcribed Image Text:**Problem 12.** For each \( n \in \mathbb{N} \), define \( A_n = \left[0, 1 + \frac{1}{n}\right] \) and \( B_n = \left[0, 1 - \frac{1}{n}\right] \).
**(a)** Prove that \( \bigcup_{n=1}^{\infty} A_n \) is an interval, and describe this interval explicitly.
**(b)** Prove that \( \bigcap_{n=1}^{\infty} A_n \) is an interval, and describe this interval explicitly.
**(c)** Prove that \( \bigcup_{n=1}^{\infty} B_n \) is an interval, and describe this interval explicitly.
**(d)** Prove that \( \bigcap_{n=1}^{\infty} B_n \) is an interval, and describe this interval explicitly.
Expert Solution
![](/static/compass_v2/shared-icons/check-mark.png)
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps with 2 images
![Blurred answer](/static/compass_v2/solution-images/blurred-answer.jpg)
Recommended textbooks for you
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Advanced Engineering Mathematics](https://www.bartleby.com/isbn_cover_images/9780470458365/9780470458365_smallCoverImage.gif)
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
![Numerical Methods for Engineers](https://www.bartleby.com/isbn_cover_images/9780073397924/9780073397924_smallCoverImage.gif)
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
![Introductory Mathematics for Engineering Applicat…](https://www.bartleby.com/isbn_cover_images/9781118141809/9781118141809_smallCoverImage.gif)
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
![Mathematics For Machine Technology](https://www.bartleby.com/isbn_cover_images/9781337798310/9781337798310_smallCoverImage.jpg)
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
![Basic Technical Mathematics](https://www.bartleby.com/isbn_cover_images/9780134437705/9780134437705_smallCoverImage.gif)
![Topology](https://www.bartleby.com/isbn_cover_images/9780134689517/9780134689517_smallCoverImage.gif)