12. Consider the arc L: y = 1+ cos z from (0,2) to (.1). Which of the following integrals give the area of the surface formed when L is revolved about the y = 27 A. 2m (cosz-1)√1+sin² z dz C. 2m (2-2)√1 + sin² z dz B. 2 2= 15¹² = 2√1+sin² z dz 27 ¹² (1. D. 2T (1 - cos z)√1 + sin² z dz

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
$
12. Consider the arc L : y = 1+ cos z from (0,2) to (,1). Which of the following integrals give the area of the
surface formed when L is revolved about the y = 27
A. 2T
15¹²
(cosz-1)√1+sin² z dr
C. 2T
(2-1)√1+ sin² z dz
*/2
B. 2T
[/² z√1 + sin² x dz
D. 2T
(1-cos 2)√1+ sin² z dz
fg
fg
OA
B
OD
0
4
f5
%
5
f6
40
6
O)
4-
&
7
*/2
8
9
f10
f11
Transcribed Image Text:$ 12. Consider the arc L : y = 1+ cos z from (0,2) to (,1). Which of the following integrals give the area of the surface formed when L is revolved about the y = 27 A. 2T 15¹² (cosz-1)√1+sin² z dr C. 2T (2-1)√1+ sin² z dz */2 B. 2T [/² z√1 + sin² x dz D. 2T (1-cos 2)√1+ sin² z dz fg fg OA B OD 0 4 f5 % 5 f6 40 6 O) 4- & 7 */2 8 9 f10 f11
Expert Solution
steps

Step by step

Solved in 3 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,