12. B' = (1 + x − 2x², 3+2x + x² − 2x³,2+x+3x² − 2x³). -

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
100%

In exercises 8 - 12 decide if the sequence B' is a basis for the space S of exercise 7.
See Method (5.3.2). Note that if there are the right number of vectors you still have to
show that the vectors belong to the subspace S.

 

#12 please and thank you -- also will vote up

7. Let S = {ao + a₁x + a₂x² + a3x³ € R3 [x] : a₁ + a₁ + a2 + 3a3 = 0}. Verify that
B= (-1 + x,-1+x²,−3+x³) is a basis of S.
In exercises 8 - 12 decide if the sequence B' is a basis for the space S of exercise 7.
See Method (5.3.2). Note that if there are the right number of vectors you still have to
show that the vectors belong to the subspace S.
8. B' = (1 + x + x² − x³,1 + 2x − x³, x + 2x² − x³).
-
9. B' = (3 – x³, 3x – x³, 3x² – x³).
10. B' = (1 + 2x + 3x² − 2x³,2+3x+ x² − 2x³).
11. B' = (1 + x − 2x², −2+x+x²,1 − 2x + x²,1 + x + x² − x³).
-
12. B' = (1 + x2x², 3+2x+x²–2x³, 2+x+3x² − 2x³).
Transcribed Image Text:7. Let S = {ao + a₁x + a₂x² + a3x³ € R3 [x] : a₁ + a₁ + a2 + 3a3 = 0}. Verify that B= (-1 + x,-1+x²,−3+x³) is a basis of S. In exercises 8 - 12 decide if the sequence B' is a basis for the space S of exercise 7. See Method (5.3.2). Note that if there are the right number of vectors you still have to show that the vectors belong to the subspace S. 8. B' = (1 + x + x² − x³,1 + 2x − x³, x + 2x² − x³). - 9. B' = (3 – x³, 3x – x³, 3x² – x³). 10. B' = (1 + 2x + 3x² − 2x³,2+3x+ x² − 2x³). 11. B' = (1 + x − 2x², −2+x+x²,1 − 2x + x²,1 + x + x² − x³). - 12. B' = (1 + x2x², 3+2x+x²–2x³, 2+x+3x² − 2x³).
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,