12. 10. 11. Given the same situation as the previous question, What is the magnitude and direction of the electric field at point B = (3μm, 3 μm)? Astronauts are on a spacecraft traveling at 2.7 × 108 m/s with respect to Earth. (a) Calculate ẞ and y for the relative motion of Earth and the spacecraft. (b) According to a biology text, it takes 45 s for blood to circulate around the human body. If astronauts on the spacecraft run experiments to determine how long (on their own clocks) it takes their blood to circulate around their bodies. What should they measure? Even if you aren't sure about a numerical answer to this question, you should at least be able to explain whether the time will be the same, shorter, or longer than 45s. (c) If Earth-bound scientists use remote equipment to measure how long it takes for the blood to circulate around the astronaut's bodies, how long will will it take according to clocks on Earth? Even if you aren't sure about a numerical answer to this question, you should at least be able to explain whether the time will be the same, shorter, or longer than 45 s. Scientists in one lab observe that two sparks occur in the same place 4.0 seconds apart in time. In another lab that is moving relative to the first, observations record two sparks that occur 5.0 seconds apart and separated by a distance of 3.0 seconds (or 9.0 × 108 m). Use either the spacetime interval or the Lorentz factor to check whether these measurements could be measurements of the same two sparks. Be sure to explain how your calculations relate to the question!
12. 10. 11. Given the same situation as the previous question, What is the magnitude and direction of the electric field at point B = (3μm, 3 μm)? Astronauts are on a spacecraft traveling at 2.7 × 108 m/s with respect to Earth. (a) Calculate ẞ and y for the relative motion of Earth and the spacecraft. (b) According to a biology text, it takes 45 s for blood to circulate around the human body. If astronauts on the spacecraft run experiments to determine how long (on their own clocks) it takes their blood to circulate around their bodies. What should they measure? Even if you aren't sure about a numerical answer to this question, you should at least be able to explain whether the time will be the same, shorter, or longer than 45s. (c) If Earth-bound scientists use remote equipment to measure how long it takes for the blood to circulate around the astronaut's bodies, how long will will it take according to clocks on Earth? Even if you aren't sure about a numerical answer to this question, you should at least be able to explain whether the time will be the same, shorter, or longer than 45 s. Scientists in one lab observe that two sparks occur in the same place 4.0 seconds apart in time. In another lab that is moving relative to the first, observations record two sparks that occur 5.0 seconds apart and separated by a distance of 3.0 seconds (or 9.0 × 108 m). Use either the spacetime interval or the Lorentz factor to check whether these measurements could be measurements of the same two sparks. Be sure to explain how your calculations relate to the question!
College Physics
11th Edition
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Raymond A. Serway, Chris Vuille
Chapter1: Units, Trigonometry. And Vectors
Section: Chapter Questions
Problem 1CQ: Estimate the order of magnitude of the length, in meters, of each of the following; (a) a mouse, (b)...
Related questions
Question
I need help on question 10.
Expert Solution
This question has been solved!
Explore an expertly crafted, step-by-step solution for a thorough understanding of key concepts.
Step by step
Solved in 2 steps
Recommended textbooks for you
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
College Physics
Physics
ISBN:
9781305952300
Author:
Raymond A. Serway, Chris Vuille
Publisher:
Cengage Learning
University Physics (14th Edition)
Physics
ISBN:
9780133969290
Author:
Hugh D. Young, Roger A. Freedman
Publisher:
PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:
9781107189638
Author:
Griffiths, David J., Schroeter, Darrell F.
Publisher:
Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:
9781337553278
Author:
Raymond A. Serway, John W. Jewett
Publisher:
Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:
9780321820464
Author:
Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:
Addison-Wesley
College Physics: A Strategic Approach (4th Editio…
Physics
ISBN:
9780134609034
Author:
Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:
PEARSON