12) The figure below shows the maximum displacement for a standing wave pattern. The earliest time between the two flashes (the solid and the dotted lines) is 0.025 s. The wave functions for the two waves that interfere to produce the standing wave pattern shown in the figure are: 4 mm 1- 0.025 s 0.5 m- (a) y1 (x, t) = 2mm sin(4nx-20nt) and y,(x, t) = 2mm sin(4nx + 20nt) (b) y, (x, t) = 2mm sin(2nx - 40t) and y2(x, t) = 2mm sin(2nx + 40nt) (c) y:(x, t) = 1mm sin(2nx - 20nt) and y2(x,t) = 1mm sin(2nx + 20nt) (d)y,(x, t) = 1mm sin(2nx - 40nt) and y,(x,t) = 1mm sin(2nx + 40nt) %3D

icon
Related questions
Question
12) The figure below shows the maximum displacement for a standing wave pattern. The earliest time
between the two flashes (the solid and the dotted lines) is 0.025 s. The wave functions for the two
waves that interfere to produce the standing wave pattern shown in the figure are:
4 mm
1= 0.025 s
E 0.5 m
(a) y1(x, t) = 2mm sin(4nx – 20nt) and y2(x, t) = 2mm sin(47x + 20nt)
(b) y, (x, t) = 2mm sin(2nx – 40nt) and y2(x, t) = 2mm sin(2nx + 40nt)
(c) y (x, t) = 1mm sin(2nx – 20nt) and y2(x,t) = 1mm sin(2nx + 20nt)
(d)y,(x, t) = 1mm sin(2nx – 40nt) and y2(x, t) = 1mm sin(2nx + 40nt)
%3D
%3D
%3D
%3D
%3D
Transcribed Image Text:12) The figure below shows the maximum displacement for a standing wave pattern. The earliest time between the two flashes (the solid and the dotted lines) is 0.025 s. The wave functions for the two waves that interfere to produce the standing wave pattern shown in the figure are: 4 mm 1= 0.025 s E 0.5 m (a) y1(x, t) = 2mm sin(4nx – 20nt) and y2(x, t) = 2mm sin(47x + 20nt) (b) y, (x, t) = 2mm sin(2nx – 40nt) and y2(x, t) = 2mm sin(2nx + 40nt) (c) y (x, t) = 1mm sin(2nx – 20nt) and y2(x,t) = 1mm sin(2nx + 20nt) (d)y,(x, t) = 1mm sin(2nx – 40nt) and y2(x, t) = 1mm sin(2nx + 40nt) %3D %3D %3D %3D %3D
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 4 steps with 1 images

Blurred answer