11. Prove each identity. T cos 2x + 1 a) cot x %3D sin 2x sin 2x b) 1 - cos 2x cot x c) (sin x + cos x)? = 1 + sin 2x 4 d) cos" 0 – sin* 0 = ços 2A = Cos

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
All of them except a b c
11. Prove each identity.
T
cos 2x + 1
a)
sin 2x
= cot x
h)
CSc 2x + cot 2x = cot x
sin 2x
2 tan x
b)
1
= cot x
i)
1 + tan´ x
= sin 2x
Cos 2x
c) (sin x + cos x)? = 1 + sin 2x
COS
CSc t
d) cos 0 – sin* 0 = cos 20
j)
sec 2t =
CSc t -
2 sin t
e) cot 0 – tan 0 = 2 cot 20
1
(sec 0) ( csc 0)
2
f) cot 0 + tan 0 = 2 csc 20
k)
Csc 20
1 + tan x
g)
TT
sin 2t
cos 2t
tan
1)
sec t =
– tan x
sin t
COs t
Transcribed Image Text:11. Prove each identity. T cos 2x + 1 a) sin 2x = cot x h) CSc 2x + cot 2x = cot x sin 2x 2 tan x b) 1 = cot x i) 1 + tan´ x = sin 2x Cos 2x c) (sin x + cos x)? = 1 + sin 2x COS CSc t d) cos 0 – sin* 0 = cos 20 j) sec 2t = CSc t - 2 sin t e) cot 0 – tan 0 = 2 cot 20 1 (sec 0) ( csc 0) 2 f) cot 0 + tan 0 = 2 csc 20 k) Csc 20 1 + tan x g) TT sin 2t cos 2t tan 1) sec t = – tan x sin t COs t
Expert Solution
steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,