11. Gamma function The gamma function is defined by I (p) = integer. a. Use the reduction formula ["²" to show that I (p+1) = p! (p factorial). x²e-x dx = p f° 00 xP-le-x dx, for p not equal to zero or a negative x XP-lex dx for p = 1, 2, 3, ... G

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question

I am confuse how do you solve part a 

111. Gamma function The gamma function is defined by I (p) =
integer.
f(x)=x
a. Use the reduction formula
as48=0
Г(Р) =
to show that I (p+1) = p! (p factorial).
b. Use the substitution x = u² and the fact that
:
Sox
X
00
So xp-¹e* dx → [(p+¹) = P&
-X
↑
u
:
P-1 -X
e
↑
dx
∞
[* pf*:
0
-b
[lim -- XS.
:
£*]
Suv' = uv- Svu
00
P -X
-X
- x-x^ |*" - S^«et pati de
P-1
:
-e
dx
px
M = X
P
_X
= [x²-ë² 10 ] + p Soºč“. ‚x“ d«
Pol
:
dx
·(0)
。)?-.
μ' = px
P
P-1
-X
· [o-o] - Sic². M. de
dx
p
X
Soc. xf² dx
xPex dx = p xP-le-x dx for p = 1, 2, 3, ...
8
foº e
S
∞
v=-èx
': ¿¨*
*x²-¹e-* dx, for p not equal to zero or a negative
√
e-u² du =
to show that I
T ( ²2 ) = √TT.
Suv' = uv-Sve
How to pick .....
IST L
L
од
nverse
A lgebraic (+,-, *, *, `√, x^)
I rig
E xponential
Transcribed Image Text:111. Gamma function The gamma function is defined by I (p) = integer. f(x)=x a. Use the reduction formula as48=0 Г(Р) = to show that I (p+1) = p! (p factorial). b. Use the substitution x = u² and the fact that : Sox X 00 So xp-¹e* dx → [(p+¹) = P& -X ↑ u : P-1 -X e ↑ dx ∞ [* pf*: 0 -b [lim -- XS. : £*] Suv' = uv- Svu 00 P -X -X - x-x^ |*" - S^«et pati de P-1 : -e dx px M = X P _X = [x²-ë² 10 ] + p Soºč“. ‚x“ d« Pol : dx ·(0) 。)?-. μ' = px P P-1 -X · [o-o] - Sic². M. de dx p X Soc. xf² dx xPex dx = p xP-le-x dx for p = 1, 2, 3, ... 8 foº e S ∞ v=-èx ': ¿¨* *x²-¹e-* dx, for p not equal to zero or a negative √ e-u² du = to show that I T ( ²2 ) = √TT. Suv' = uv-Sve How to pick ..... IST L L од nverse A lgebraic (+,-, *, *, `√, x^) I rig E xponential
Expert Solution
trending now

Trending now

This is a popular solution!

steps

Step by step

Solved in 2 steps with 1 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,