11) Formulate the dual problem for the linear programming problem: 11) C= 3x1 + x2 Minimize subject to 2x1 + 3x2 2 60 X1 + 4x2 2 40 x1, x2 2 0 A) Maximize P=60y1 + 40y2 B) Maximize P= 3y1 + Y2 subject to subject to 2y1 + y2 2 3 3y1 + 4y2 1 y1- y2 × 0 D) Maximize P=60y1 + 40y2 2y1 + y2 s 3 3y1 + 4y2 s1 y1- y2 > 0 C) Maximize P= 3y1 + y2 subject to subject to 2y1 + y2 s3 3y1 + 4y2 s 1 2y1 + y2 3 3y1 + 4y2 1 y1- y2 20 y1- y2 0

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
< >
a learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com
+
Bb https://learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com/5d44406cac91b/269743121?X-BI..
دکتر هلاکوی ی هلاكوی ی جدید هلاکویی خیانت هلاکوی ی ازدواج هلاکوی ی اعتماد به نفس هلاکوی ی 2021 - YouTube •
10)
Bb
b My Questions | bartleby
10) Solve the following linear programming probiem using the simpiex method:
Maximize P =x1 - x2
subject to
X1 + x2 s 4
2x1 + 7x2 s 14
x1, x2 2 0
A) Max P = 14 at x1= 4 and x2 = 0
B) Max P = 4 at x1= 4 and x2 = 4
C) Max P = 4 at x1= 4 and x2 = 0
D) Max P = 4 at x1= 14 and x2 = 0
11) Formulate the dual problem for the linear programming problem:
11)
Minimize
C= 3x1 + x2
subject to
2x1 + 3x2 2 60
X1 + 4x2 2 40
X1, x2 2 0
A) Maximize
P = 60y1 + 40y2
B) Maximize
P = 3y1 + y2
subject to
subject to
2y1 + y2 s3
2y1 + y2 2 3
Зу1 + 4y2 <1
y1, y2 2 0
P = 3y1 + y2
Зу1 + 4y2 > 1
y1, y2 2 0
C) Maximize
D) Maximize
P = 60y1 + 40y2
subject to
subject to
2y1 + y2 s3
Зу1 + 4у2 <1
2y1 + y2 2 3
3y1 + 4y2 > 1
y1, y2 - 0
y1, y2 2 0
PAGE 4 REVIEW_SANJAC
Transcribed Image Text:< > a learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com + Bb https://learn-us-east-1-prod-fleet02-xythos.content.blackboardcdn.com/5d44406cac91b/269743121?X-BI.. دکتر هلاکوی ی هلاكوی ی جدید هلاکویی خیانت هلاکوی ی ازدواج هلاکوی ی اعتماد به نفس هلاکوی ی 2021 - YouTube • 10) Bb b My Questions | bartleby 10) Solve the following linear programming probiem using the simpiex method: Maximize P =x1 - x2 subject to X1 + x2 s 4 2x1 + 7x2 s 14 x1, x2 2 0 A) Max P = 14 at x1= 4 and x2 = 0 B) Max P = 4 at x1= 4 and x2 = 4 C) Max P = 4 at x1= 4 and x2 = 0 D) Max P = 4 at x1= 14 and x2 = 0 11) Formulate the dual problem for the linear programming problem: 11) Minimize C= 3x1 + x2 subject to 2x1 + 3x2 2 60 X1 + 4x2 2 40 X1, x2 2 0 A) Maximize P = 60y1 + 40y2 B) Maximize P = 3y1 + y2 subject to subject to 2y1 + y2 s3 2y1 + y2 2 3 Зу1 + 4y2 <1 y1, y2 2 0 P = 3y1 + y2 Зу1 + 4y2 > 1 y1, y2 2 0 C) Maximize D) Maximize P = 60y1 + 40y2 subject to subject to 2y1 + y2 s3 Зу1 + 4у2 <1 2y1 + y2 2 3 3y1 + 4y2 > 1 y1, y2 - 0 y1, y2 2 0 PAGE 4 REVIEW_SANJAC
Expert Solution
steps

Step by step

Solved in 3 steps with 3 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,