11) Evaluate the following problem: 311five - 24five

Advanced Engineering Mathematics
10th Edition
ISBN:9780470458365
Author:Erwin Kreyszig
Publisher:Erwin Kreyszig
Chapter2: Second-order Linear Odes
Section: Chapter Questions
Problem 1RQ
icon
Related questions
Question
**Problem 11:**

Evaluate the following problem: \( 311_{five} - 24_{five} \).

This question involves subtraction in base 5 (quinary numeral system). To solve this, convert both numbers to base 10, perform the subtraction, and convert back to base 5 if needed.

1. **Convert to Base 10:**

   - \( 311_{five} \): 
     - \( 3 \times 5^2 + 1 \times 5^1 + 1 \times 5^0 \)
     - \( 3 \times 25 + 1 \times 5 + 1 \)
     - \( 75 + 5 + 1 = 81 \)
   
   - \( 24_{five} \):
     - \( 2 \times 5^1 + 4 \times 5^0 \)
     - \( 2 \times 5 + 4 \)
     - \( 10 + 4 = 14 \)

2. **Subtract in Base 10:**

   - \( 81 - 14 = 67 \)

3. **Convert Back to Base 5:**

   - Divide 67 by 5 to convert back to base 5.
   - \( 67 \div 5 = 13 \) remainder \( 2 \) (rightmost digit)
   - \( 13 \div 5 = 2 \) remainder \( 3 \) (next digit)
   - \( 2 \div 5 = 0 \) remainder \( 2 \) (leftmost digit)
   - Result: \( 232_{five} \)

**Solution: \( 311_{five} - 24_{five} = 232_{five} \)**
Transcribed Image Text:**Problem 11:** Evaluate the following problem: \( 311_{five} - 24_{five} \). This question involves subtraction in base 5 (quinary numeral system). To solve this, convert both numbers to base 10, perform the subtraction, and convert back to base 5 if needed. 1. **Convert to Base 10:** - \( 311_{five} \): - \( 3 \times 5^2 + 1 \times 5^1 + 1 \times 5^0 \) - \( 3 \times 25 + 1 \times 5 + 1 \) - \( 75 + 5 + 1 = 81 \) - \( 24_{five} \): - \( 2 \times 5^1 + 4 \times 5^0 \) - \( 2 \times 5 + 4 \) - \( 10 + 4 = 14 \) 2. **Subtract in Base 10:** - \( 81 - 14 = 67 \) 3. **Convert Back to Base 5:** - Divide 67 by 5 to convert back to base 5. - \( 67 \div 5 = 13 \) remainder \( 2 \) (rightmost digit) - \( 13 \div 5 = 2 \) remainder \( 3 \) (next digit) - \( 2 \div 5 = 0 \) remainder \( 2 \) (leftmost digit) - Result: \( 232_{five} \) **Solution: \( 311_{five} - 24_{five} = 232_{five} \)**
Expert Solution
Step 1

Advanced Math homework question answer, step 1, image 1

steps

Step by step

Solved in 2 steps with 2 images

Blurred answer
Recommended textbooks for you
Advanced Engineering Mathematics
Advanced Engineering Mathematics
Advanced Math
ISBN:
9780470458365
Author:
Erwin Kreyszig
Publisher:
Wiley, John & Sons, Incorporated
Numerical Methods for Engineers
Numerical Methods for Engineers
Advanced Math
ISBN:
9780073397924
Author:
Steven C. Chapra Dr., Raymond P. Canale
Publisher:
McGraw-Hill Education
Introductory Mathematics for Engineering Applicat…
Introductory Mathematics for Engineering Applicat…
Advanced Math
ISBN:
9781118141809
Author:
Nathan Klingbeil
Publisher:
WILEY
Mathematics For Machine Technology
Mathematics For Machine Technology
Advanced Math
ISBN:
9781337798310
Author:
Peterson, John.
Publisher:
Cengage Learning,
Basic Technical Mathematics
Basic Technical Mathematics
Advanced Math
ISBN:
9780134437705
Author:
Washington
Publisher:
PEARSON
Topology
Topology
Advanced Math
ISBN:
9780134689517
Author:
Munkres, James R.
Publisher:
Pearson,